Suppr超能文献

拟南芥生物钟核心处组蛋白修饰的有序变化。

Ordered changes in histone modifications at the core of the Arabidopsis circadian clock.

机构信息

Molecular Genetics Department, Center for Research in Agricultural Genomics (CRAG), Consortium Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentaries-Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.

出版信息

Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21540-5. doi: 10.1073/pnas.1217022110. Epub 2012 Dec 12.

Abstract

Circadian clock function in Arabidopsis thaliana relies on a complex network of reciprocal regulations among oscillator components. Here, we demonstrate that chromatin remodeling is a prevalent regulatory mechanism at the core of the clock. The peak-to-trough circadian oscillation is paralleled by the sequential accumulation of H3 acetylation (H3K56ac, K9ac), H3K4 trimethylation (H3K4me3), and H3K4me2. Inhibition of acetylation and H3K4me3 abolishes oscillator gene expression, indicating that both marks are essential for gene activation. Mechanistically, blocking H3K4me3 leads to increased clock-repressor binding, suggesting that H3K4me3 functions as a transition mark modulating the progression from activation to repression. The histone methyltransferase SET DOMAIN GROUP 2/ARABIDOPSIS TRITHORAX RELATED 3 (SDG2/ATXR3) might contribute directly or indirectly to this regulation because oscillator gene expression, H3K4me3 accumulation, and repressor binding are altered in plants misexpressing SDG2/ATXR3. Despite divergences in oscillator components, a chromatin-dependent mechanism of clock gene activation appears to be common to both plant and mammal circadian systems.

摘要

拟南芥生物钟功能依赖于振荡器组件之间相互调节的复杂网络。在这里,我们证明了染色质重塑是生物钟核心的一种普遍的调节机制。峰到谷的昼夜节律振荡伴随着 H3 乙酰化(H3K56ac、K9ac)、H3K4 三甲基化(H3K4me3)和 H3K4me2 的顺序积累。乙酰化和 H3K4me3 的抑制消除了振荡器基因的表达,表明这两种标记物对于基因激活都是必不可少的。从机制上讲,阻断 H3K4me3 导致时钟抑制物结合增加,表明 H3K4me3 作为一种过渡标记,调节从激活到抑制的进展。组蛋白甲基转移酶 SET 结构域家族 2/拟南芥 TRITHORAX 相关蛋白 3(SDG2/ATXR3)可能直接或间接地促成这种调节,因为在过表达 SDG2/ATXR3 的植物中,振荡器基因的表达、H3K4me3 的积累和抑制物的结合都发生了改变。尽管振荡器组件存在差异,但激活生物钟基因的染色质依赖机制似乎在植物和哺乳动物的昼夜节律系统中是共同的。

相似文献

1
Ordered changes in histone modifications at the core of the Arabidopsis circadian clock.
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21540-5. doi: 10.1073/pnas.1217022110. Epub 2012 Dec 12.
2
A chromatin-dependent mechanism regulates gene expression at the core of the Arabidopsis circadian clock.
Plant Signal Behav. 2013 May;8(5):e24079. doi: 10.4161/psb.24079. Epub 2013 Mar 7.
4
Arabidopsis trithorax-related3/SET domain GROUP2 is required for the winter-annual habit of Arabidopsis thaliana.
Plant Cell Physiol. 2012 May;53(5):834-46. doi: 10.1093/pcp/pcs021. Epub 2012 Feb 28.
5
SET DOMAIN GROUP2 is the major histone H3 lysine [corrected] 4 trimethyltransferase in Arabidopsis.
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18557-62. doi: 10.1073/pnas.1010478107. Epub 2010 Oct 11.
7
, , and Encode Putative H3K4 Methyltransferases and Are Critical for Plant Development.
Plant Physiol. 2017 Jul;174(3):1795-1806. doi: 10.1104/pp.16.01944. Epub 2017 May 26.
8
Circadian clock regulates dynamic chromatin modifications associated with Arabidopsis CCA1/LHY and TOC1 transcriptional rhythms.
Plant Cell Physiol. 2012 Dec;53(12):2016-29. doi: 10.1093/pcp/pcs148. Epub 2012 Nov 4.
9
Rhythmic oscillation of histone acetylation and methylation at the Arabidopsis central clock loci.
Mol Cells. 2012 Sep;34(3):279-87. doi: 10.1007/s10059-012-0103-5. Epub 2012 Aug 8.
10
Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana.
Genome Biol. 2009;10(6):R62. doi: 10.1186/gb-2009-10-6-r62. Epub 2009 Jun 9.

引用本文的文献

1
2
Transcriptomic reprogramming and epigenetic regulation underlying pollination-dependent and auxin-induced fruit set in tomato.
Front Plant Sci. 2025 Feb 11;16:1495494. doi: 10.3389/fpls.2025.1495494. eCollection 2025.
3
Circadian rhythms in stem cells and their therapeutic potential.
Stem Cell Res Ther. 2025 Feb 23;16(1):85. doi: 10.1186/s13287-025-04178-9.
5
Diurnal control of H3K27me1 deposition shapes expression of a subset of cell cycle and DNA damage response genes.
Plant J. 2024 Dec;120(6):2325-2336. doi: 10.1111/tpj.17114. Epub 2024 Nov 1.
7
Unveiled: Exploring Its Diverse Roles and Mechanisms.
Genes (Basel). 2024 Jan 13;15(1):94. doi: 10.3390/genes15010094.
9
Current Insights into mA RNA Methylation and Its Emerging Role in Plant Circadian Clock.
Plants (Basel). 2023 Jan 31;12(3):624. doi: 10.3390/plants12030624.

本文引用的文献

1
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals.
Science. 2012 Oct 19;338(6105):349-54. doi: 10.1126/science.1226339. Epub 2012 Aug 30.
2
Rhythmic oscillation of histone acetylation and methylation at the Arabidopsis central clock loci.
Mol Cells. 2012 Sep;34(3):279-87. doi: 10.1007/s10059-012-0103-5. Epub 2012 Aug 8.
4
Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator.
Science. 2012 Apr 6;336(6077):75-9. doi: 10.1126/science.1219075. Epub 2012 Mar 8.
6
Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor.
Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3167-72. doi: 10.1073/pnas.1200355109. Epub 2012 Feb 6.
7
The genetics of plant clocks.
Adv Genet. 2011;74:105-39. doi: 10.1016/B978-0-12-387690-4.00004-0.
8
Histone modifications in transcriptional activation during plant development.
Biochim Biophys Acta. 2011 Oct;1809(10):567-76. doi: 10.1016/j.bbagrm.2011.07.001. Epub 2011 Jul 14.
9
The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth.
Nature. 2011 Jul 13;475(7356):398-402. doi: 10.1038/nature10182.
10
SET domain proteins in plant development.
Biochim Biophys Acta. 2011 Aug;1809(8):407-20. doi: 10.1016/j.bbagrm.2011.05.008. Epub 2011 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验