Molecular Genetics Department, Center for Research in Agricultural Genomics (CRAG), Consortium Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentaries-Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21540-5. doi: 10.1073/pnas.1217022110. Epub 2012 Dec 12.
Circadian clock function in Arabidopsis thaliana relies on a complex network of reciprocal regulations among oscillator components. Here, we demonstrate that chromatin remodeling is a prevalent regulatory mechanism at the core of the clock. The peak-to-trough circadian oscillation is paralleled by the sequential accumulation of H3 acetylation (H3K56ac, K9ac), H3K4 trimethylation (H3K4me3), and H3K4me2. Inhibition of acetylation and H3K4me3 abolishes oscillator gene expression, indicating that both marks are essential for gene activation. Mechanistically, blocking H3K4me3 leads to increased clock-repressor binding, suggesting that H3K4me3 functions as a transition mark modulating the progression from activation to repression. The histone methyltransferase SET DOMAIN GROUP 2/ARABIDOPSIS TRITHORAX RELATED 3 (SDG2/ATXR3) might contribute directly or indirectly to this regulation because oscillator gene expression, H3K4me3 accumulation, and repressor binding are altered in plants misexpressing SDG2/ATXR3. Despite divergences in oscillator components, a chromatin-dependent mechanism of clock gene activation appears to be common to both plant and mammal circadian systems.
拟南芥生物钟功能依赖于振荡器组件之间相互调节的复杂网络。在这里,我们证明了染色质重塑是生物钟核心的一种普遍的调节机制。峰到谷的昼夜节律振荡伴随着 H3 乙酰化(H3K56ac、K9ac)、H3K4 三甲基化(H3K4me3)和 H3K4me2 的顺序积累。乙酰化和 H3K4me3 的抑制消除了振荡器基因的表达,表明这两种标记物对于基因激活都是必不可少的。从机制上讲,阻断 H3K4me3 导致时钟抑制物结合增加,表明 H3K4me3 作为一种过渡标记,调节从激活到抑制的进展。组蛋白甲基转移酶 SET 结构域家族 2/拟南芥 TRITHORAX 相关蛋白 3(SDG2/ATXR3)可能直接或间接地促成这种调节,因为在过表达 SDG2/ATXR3 的植物中,振荡器基因的表达、H3K4me3 的积累和抑制物的结合都发生了改变。尽管振荡器组件存在差异,但激活生物钟基因的染色质依赖机制似乎在植物和哺乳动物的昼夜节律系统中是共同的。