Suppr超能文献

用于连续分析 N2O 同量异位素的新型激光光谱技术--应用及与同位素比质谱的比较。

Novel laser spectroscopic technique for continuous analysis of N2O isotopomers--application and intercomparison with isotope ratio mass spectrometry.

机构信息

Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, D-24118, Kiel, Germany.

出版信息

Rapid Commun Mass Spectrom. 2013 Jan 15;27(1):216-22. doi: 10.1002/rcm.6434.

Abstract

RATIONALE

Nitrous oxide (N(2)O), a highly climate-relevant trace gas, is mainly derived from microbial denitrification and nitrification processes in soils. Apportioning N(2)O to these source processes is a challenging task, but better understanding of the processes is required to improve mitigation strategies. The N(2)O site-specific (15)N signatures from denitrification and nitrification have been shown to be clearly different, making this signature a potential tool for N(2)O source identification. We have applied for the first time quantum cascade laser absorption spectroscopy (QCLAS) for the continuous analysis of the intramolecular (15)N distribution of soil-derived N(2)O and compared this with state-of-the-art isotope ratio mass spectrometry (IRMS).

METHODS

Soil was amended with nitrate and sucrose and incubated in a laboratory setup. The N(2)O release was quantified by FTIR spectroscopy, while the N(2)O intramolecular (15)N distribution was continuously analyzed by online QCLAS at 1 Hz resolution. The QCLAS results on time-integrating flask samples were compared with those from the IRMS analysis.

RESULTS

The analytical precision (2σ) of QCLAS was around 0.3‰ for the δ(15)N(bulk) and the (15)N site preference (SP) for 1-min average values. Comparing the two techniques on flask samples, excellent agreement (R(2)= 0.99; offset of 1.2‰) was observed for the δ(15)N(bulk) values while for the SP values the correlation was less good (R(2 )= 0.76; offset of 0.9‰), presumably due to the lower precision of the IRMS SP measurements.

CONCLUSIONS

These findings validate QCLAS as a viable alternative technique with even higher precision than state-of-the-art IRMS. Thus, laser spectroscopy has the potential to contribute significantly to a better understanding of N turnover in soils, which is crucial for advancing strategies to mitigate emissions of this efficient greenhouse gas.

摘要

原理

氧化亚氮(N(2)O)是一种高度相关的痕量气体,主要来源于土壤中微生物的反硝化和硝化过程。将 N(2)O 分配到这些源过程是一项具有挑战性的任务,但需要更好地了解这些过程,以改进缓解策略。已经证明,反硝化和硝化过程中 N(2)O 的特定地点(15)N 特征明显不同,这使得该特征成为 N(2)O 源识别的潜在工具。我们首次应用量子级联激光吸收光谱(QCLAS)连续分析土壤衍生 N(2)O 的分子内(15)N 分布,并将其与最先进的同位素比质谱(IRMS)进行了比较。

方法

向硝酸盐和蔗糖中添加土壤,并在实验室装置中进行培养。通过傅里叶变换红外光谱法(FTIR)定量测定 N(2)O 的释放量,同时通过在线 QCLAS 以 1 Hz 的分辨率连续分析 N(2)O 的分子内(15)N 分布。将 QCLAS 在时间积分瓶样品上的结果与 IRMS 分析的结果进行比较。

结果

QCLAS 的分析精度(2σ)对于 1 分钟平均δ(15)N(bulk)和(15)N 位置偏好(SP)约为 0.3‰。在瓶样品上比较这两种技术时,观察到δ(15)N(bulk)值非常吻合(R(2)=0.99;偏移量为 1.2‰),而 SP 值的相关性较差(R(2)=0.76;偏移量为 0.9‰),这可能是由于 IRMS SP 测量的精度较低所致。

结论

这些发现验证了 QCLAS 作为一种可行的替代技术,其精度甚至高于最先进的 IRMS。因此,激光光谱学有可能为更好地了解土壤中的 N 转化做出重大贡献,这对于推进减少这种高效温室气体排放的策略至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验