Suppr超能文献

高效生产和复性双结毒素,一种 TRPV1 通道的激活剂。

High yield production and refolding of the double-knot toxin, an activator of TRPV1 channels.

机构信息

School of Life Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.

出版信息

PLoS One. 2012;7(12):e51516. doi: 10.1371/journal.pone.0051516. Epub 2012 Dec 11.

Abstract

A unique peptide toxin, named double-knot toxin (DkTx), was recently purified from the venom of the tarantula Ornithoctonus huwena and was found to stably activate TRPV1 channels by targeting the outer pore domain. DkTx has been shown to consist of two inhibitory cysteine-knot (ICK) motifs, referred to as K1 and K2, each containing six cysteine residues. Beyond this initial characterization, however, the structural and functional details about DkTx remains elusive in large part due to the lack of a high yielding methodology for the synthesis and folding of this cysteine-rich peptide. Here, we overcome this obstacle by generating pure DkTx in quantities sufficient for structural and functional analyses. Our methodology entails expression of DkTx in E. coli followed by oxidative folding of the isolated linear peptide. Upon screening of various oxidative conditions for optimizing the folding yield of the toxin, we observed that detergents were required for efficient folding of the linear peptide. Our synthetic DkTx co-eluted with the native toxin on HPLC, and irreversibly activated TRPV1 in a manner identical to native DkTx. Interestingly, we find that DkTx has two interconvertible conformations present in a 1∶6 ratio at equilibrium. Kinetic analysis of DkTx folding suggests that the K1 and K2 domains influence each other during the folding process. Moreover, the CD spectra of the toxins shows that the secondary structures of K1 and K2 remains intact even after separating the two knots. These findings provide a starting point for detailed studies on the structural and functional characterization of DkTx and utilization of this toxin as a tool to explore the elusive mechanisms underlying the polymodal gating of TRPV1.

摘要

一种独特的肽毒素,命名为双结毒素(DkTx),最近从狼蛛 Ornithoctonus huwena 的毒液中被分离出来,被发现通过靶向外孔域稳定地激活 TRPV1 通道。DkTx 由两个抑制性半胱氨酸结(ICK)基序组成,分别称为 K1 和 K2,每个基序包含六个半胱氨酸残基。然而,除了最初的表征之外,由于缺乏一种高产的方法来合成和折叠这种富含半胱氨酸的肽,DkTx 的结构和功能细节仍然难以捉摸。在这里,我们通过生成足够数量的纯 DkTx 来克服这一障碍,用于结构和功能分析。我们的方法涉及在大肠杆菌中表达 DkTx,然后对分离的线性肽进行氧化折叠。在筛选各种氧化条件以优化毒素的折叠产率时,我们观察到去污剂对于线性肽的有效折叠是必需的。我们的合成 DkTx 在 HPLC 上与天然毒素共洗脱,并以与天然 DkTx 相同的方式不可逆地激活 TRPV1。有趣的是,我们发现 DkTx 以 1∶6 的平衡比例存在两种可相互转换的构象。DkTx 折叠的动力学分析表明,在折叠过程中 K1 和 K2 结构域相互影响。此外,毒素的 CD 光谱表明,即使将两个结分开,K1 和 K2 结构域的二级结构仍然完整。这些发现为 DkTx 的结构和功能表征的详细研究以及利用这种毒素作为探索 TRPV1 多模态门控的难以捉摸的机制的工具提供了一个起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/304f/3519854/41383d0c5b9d/pone.0051516.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验