Suppr超能文献

半胱氨酸-金簇合物中的结构和键合演变。

The structural and bonding evolution in cysteine-gold cluster complexes.

机构信息

School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China.

出版信息

Phys Chem Chem Phys. 2013 Feb 7;15(5):1690-8. doi: 10.1039/c2cp42830j.

Abstract

The bonding characteristics in cysteine-gold cluster complexes represented by thiolate (Au(n)·Cys(S) (n = 1, 3, 5, 7)) and thiol (Au(n)·Cys(SH) (n = 2, 4, 6, 8)) is investigated by density functional theory with 6-31G(d,p) and Lanl2DZ hybrid basis sets. The complexes exhibit very different bonding characteristic between these two forms. In the Au(n)·Cys(S) complexes, the charge transfers from gold clusters to sulfur atoms. The number of S-Au bonds in the Au(n)·Cys(S) complexes evolves from one to two when n is greater than three. For n equals three, i.e. Au(3)·Cys(S), its ground state only has one S-Au bond. While the only S-Au bond in Au(1)·Cys(S) is mainly covalent, the nature of the S-Au bond in other thiolates is featured with the combination of covalent and donor-acceptor interactions. In particular, one stable isomer of Au(3)·Cys(S) with two S-Au bonds, which is 2 kcal mol(-1) higher in energy than the corresponding ground state, consists of one covalent and one donor-acceptor S-Au bond explicitly. Moreover, the localized three center two electron bonds are formed within the Au clusters, which facilitates the formation of the two S-Au bonds in Au(5)·Cys(S) and Au(7)·Cys(S) complexes. In the Au(n)·Cys(SH) complexes, the donor-acceptor interaction prevails in the Au-SH bond by transferring lone pair electrons from the sulfur atom to the adjacent gold atom. Interestingly, the orbital with much more 6s-component in Au(4)·Cys(SH) enhances the donor-acceptor bonding character, thus yields the strongest bonding among all the Au(n)·Cys(SH) complexes studied in this paper. In general, the bonding strength between gold clusters and cysteine is positively correlated with the S-Au overlap-weighted bond order, but negatively correlated with the S-Au bond length. Lastly, the covalent and donor-acceptor S-Au bond strength is computed to be 48 and 18 kcal mol(-1), respectively.

摘要

用密度泛函理论(DFT)与 6-31G(d,p)和 Lanl2DZ 混合基组研究了半胱氨酸金簇配合物中的键合特性,这些配合物由硫醇(Au(n)·Cys(SH)(n = 2,4,6,8))和硫代物(Au(n)·Cys(S)(n = 1,3,5,7))表示。这两种形式的配合物表现出非常不同的键合特性。在 Au(n)·Cys(S)配合物中,电荷从金簇转移到硫原子。当 n 大于 3 时,Au(n)·Cys(S)配合物中的 S-Au 键数量从一个增加到两个。对于 n 等于 3,即 Au(3)·Cys(S),其基态仅具有一个 S-Au 键。虽然 Au(1)·Cys(S)中的唯一 S-Au 键主要是共价的,但其他硫醇中的 S-Au 键的性质以共价和供体-受体相互作用的组合为特征。特别是,具有两个 S-Au 键的 Au(3)·Cys(S)的一个稳定异构体,其能量比相应的基态高 2 kcal mol(-1),明确包含一个共价和一个供体-受体 S-Au 键。此外,Au 簇内形成了局部的三中心二电子键,这有利于 Au(5)·Cys(S)和 Au(7)·Cys(S)配合物中两个 S-Au 键的形成。在 Au(n)·Cys(SH)配合物中,通过将硫原子上的孤对电子转移到相邻的金原子上,供体-受体相互作用在 Au-SH 键中占主导地位。有趣的是,Au(4)·Cys(SH)中具有更多 6s 分量的轨道增强了供体-受体键合特性,从而产生了本文研究的所有 Au(n)·Cys(SH)配合物中最强的键合。一般来说,金簇与半胱氨酸之间的键合强度与 S-Au 重叠加权键序呈正相关,与 S-Au 键长呈负相关。最后,计算出共价和供体-受体 S-Au 键的强度分别为 48 和 18 kcal mol(-1)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验