IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA.
Nano Lett. 2013 Jan 9;13(1):315-20. doi: 10.1021/nl304310x. Epub 2012 Dec 18.
In recent years, flexible devices based on nanoscale materials and structures have begun to emerge, exploiting semiconductor nanowires, graphene, and carbon nanotubes. This is primarily to circumvent the existing shortcomings of the conventional flexible electronics based on organic and amorphous semiconductors. The aim of this new class of flexible nanoelectronics is to attain high-performance devices with increased packing density. However, highly integrated flexible circuits with nanoscale transistors have not yet been demonstrated. Here, we show nanoscale flexible circuits on 60 Å thick silicon, including functional ring oscillators and memory cells. The 100-stage ring oscillators exhibit the stage delay of ~16 ps at a power supply voltage of 0.9 V, the best reported for any flexible circuits to date. The mechanical flexibility is achieved by employing the controlled spalling technology, enabling the large-area transfer of the ultrathin body silicon devices to a plastic substrate at room temperature. These results provide a simple and cost-effective pathway to enable ultralight flexible nanoelectronics with unprecedented level of system complexity based on mainstream silicon technology.
近年来,基于纳米材料和结构的柔性器件开始出现,利用半导体纳米线、石墨烯和碳纳米管。这主要是为了规避基于有机和非晶半导体的传统柔性电子学现有的缺点。这种新型的柔性纳米电子学的目标是获得具有更高封装密度的高性能器件。然而,具有纳米级晶体管的高度集成的柔性电路尚未得到证明。在这里,我们展示了厚度为 60 Å 的硅上的纳米级柔性电路,包括功能环形振荡器和存储单元。100 级环形振荡器在 0.9 V 的电源电压下表现出约 16 ps 的级延迟,这是迄今为止任何柔性电路中报道的最佳性能。机械灵活性是通过采用受控剥落技术实现的,从而能够在室温下将超薄膜体硅器件大面积转移到塑料衬底上。这些结果为基于主流硅技术的超轻量柔性纳米电子学提供了一种简单且具有成本效益的途径,实现了前所未有的系统复杂性水平。