Suppr超能文献

锰配合物:原核生物和酵母中抵抗氧化应激的多种代谢途径。

Manganese complexes: diverse metabolic routes to oxidative stress resistance in prokaryotes and yeast.

机构信息

Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.

出版信息

Antioxid Redox Signal. 2013 Sep 20;19(9):933-44. doi: 10.1089/ars.2012.5093. Epub 2013 Feb 6.

Abstract

SIGNIFICANCE

Antioxidant enzymes are thought to provide critical protection to cells against reactive oxygen species (ROS). However, many organisms can fully compensate for the loss of such enzymatic defenses by accumulating metabolites and Mn²⁺, which can form catalytic Mn-antioxidants. Accumulated metabolites can direct reactivity of Mn²⁺ with superoxide and specifically shield proteins from oxidative damage.

RECENT ADVANCES

There is mounting evidence that Mn-Pi (orthophosphate) complexes act as potent scavengers of superoxide in all three branches of life. Moreover, it is evident that Mn²⁺ in complexes with carbonates, peptides, nucleosides, and organic acids can also form catalytic Mn-antioxidants, pointing to diverse metabolic routes to oxidative stress resistance.

CRITICAL ISSUES

What conditions favor utility of Mn-metabolites versus enzymatic means for removing ROS? Mn²⁺-metabolite defenses are critical for preserving the activity of repair enzymes in Deinococcus radiodurans exposed to intense radiation stress, and in Lactobacillus plantarum, which lacks antioxidant enzymes. In other microorganisms, Mn-antioxidants can serve as an auxiliary protection when enzymatic antioxidants are insufficient or fail. These findings of a critical role of Mn-antioxidants in the survival of prokaryotes under oxidative stress parallel the trends developing for the simple eukaryote Saccharomyces cerevisiae.

FUTURE DIRECTIONS

Phosphates, peptides and organic acids are just a snapshot of the types of anionic metabolites that promote such reactivity of Mn²⁺. Their probable roles in pathogen defense against the host immune response and in ROS-mediated signaling pathways are also areas that are worthy of serious investigation. Moreover, it is clear that these protective chemical processes can be harnessed for practical purposes.

摘要

意义

抗氧化酶被认为为细胞提供了对抗活性氧(ROS)的关键保护。然而,许多生物体可以通过积累代谢物和 Mn²⁺来完全补偿这些酶防御的损失,这些代谢物和 Mn²⁺可以形成催化 Mn-抗氧化剂。积累的代谢物可以指导 Mn²⁺与超氧化物的反应性,并专门保护蛋白质免受氧化损伤。

最新进展

越来越多的证据表明,Mn-Pi(正磷酸盐)复合物在生命的三个分支中都可以作为超氧化物的有效清除剂。此外,显然 Mn²⁺与碳酸盐、肽、核苷和有机酸形成的复合物也可以形成催化 Mn-抗氧化剂,这表明存在多种代谢途径来抵抗氧化应激。

关键问题

哪些条件有利于利用 Mn-代谢物而不是酶的方法来去除 ROS?在强烈辐射应激下的 Deinococcus radiodurans 和缺乏抗氧化酶的 Lactobacillus plantarum 中,Mn-代谢物防御对于保护修复酶的活性至关重要。在其他微生物中,当酶抗氧化剂不足或失效时,Mn-抗氧化剂可以作为辅助保护。这些关于 Mn-抗氧化剂在原核生物应对氧化应激时的生存中起着关键作用的发现,与简单真核生物 Saccharomyces cerevisiae 中发展的趋势相平行。

未来方向

磷酸盐、肽和有机酸只是促进 Mn²⁺这种反应性的阴离子代谢物类型的一个快照。它们在病原体防御宿主免疫反应和 ROS 介导的信号通路中的可能作用也是值得认真研究的领域。此外,很明显,这些保护化学过程可以被用于实际目的。

相似文献

引用本文的文献

1
Role of manganese in brain health and disease: Focus on oxidative stress.锰在脑健康与疾病中的作用:聚焦氧化应激
Free Radic Biol Med. 2025 May;232:306-318. doi: 10.1016/j.freeradbiomed.2025.03.013. Epub 2025 Mar 12.
3
Metals in Motion: Understanding Labile Metal Pools in Bacteria.运动中的金属:了解细菌中的不稳定金属库
Biochemistry. 2025 Jan 21;64(2):329-345. doi: 10.1021/acs.biochem.4c00726. Epub 2025 Jan 5.

本文引用的文献

1
Redox reactions and microbial killing in the neutrophil phagosome.中性粒细胞吞噬体内的氧化还原反应与微生物杀灭。
Antioxid Redox Signal. 2013 Feb 20;18(6):642-60. doi: 10.1089/ars.2012.4827. Epub 2012 Oct 9.
4
Mononuclear iron enzymes are primary targets of hydrogen peroxide stress.单核铁酶是过氧化氢应激的主要靶标。
J Biol Chem. 2012 May 4;287(19):15544-56. doi: 10.1074/jbc.M111.330365. Epub 2012 Mar 12.
5
Battles with iron: manganese in oxidative stress protection.与铁的战斗:锰在氧化应激保护中的作用。
J Biol Chem. 2012 Apr 20;287(17):13541-8. doi: 10.1074/jbc.R111.312181. Epub 2012 Jan 13.
6
Death by protein damage in irradiated cells.受辐照细胞中的蛋白质损伤导致的死亡。
DNA Repair (Amst). 2012 Jan 2;11(1):12-21. doi: 10.1016/j.dnarep.2011.10.024. Epub 2011 Nov 23.
10
Oxidative stress resistance in Deinococcus radiodurans.耐辐射球菌的抗氧化应激能力。
Microbiol Mol Biol Rev. 2011 Mar;75(1):133-91. doi: 10.1128/MMBR.00015-10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验