Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
Antioxid Redox Signal. 2013 Sep 20;19(9):933-44. doi: 10.1089/ars.2012.5093. Epub 2013 Feb 6.
Antioxidant enzymes are thought to provide critical protection to cells against reactive oxygen species (ROS). However, many organisms can fully compensate for the loss of such enzymatic defenses by accumulating metabolites and Mn²⁺, which can form catalytic Mn-antioxidants. Accumulated metabolites can direct reactivity of Mn²⁺ with superoxide and specifically shield proteins from oxidative damage.
There is mounting evidence that Mn-Pi (orthophosphate) complexes act as potent scavengers of superoxide in all three branches of life. Moreover, it is evident that Mn²⁺ in complexes with carbonates, peptides, nucleosides, and organic acids can also form catalytic Mn-antioxidants, pointing to diverse metabolic routes to oxidative stress resistance.
What conditions favor utility of Mn-metabolites versus enzymatic means for removing ROS? Mn²⁺-metabolite defenses are critical for preserving the activity of repair enzymes in Deinococcus radiodurans exposed to intense radiation stress, and in Lactobacillus plantarum, which lacks antioxidant enzymes. In other microorganisms, Mn-antioxidants can serve as an auxiliary protection when enzymatic antioxidants are insufficient or fail. These findings of a critical role of Mn-antioxidants in the survival of prokaryotes under oxidative stress parallel the trends developing for the simple eukaryote Saccharomyces cerevisiae.
Phosphates, peptides and organic acids are just a snapshot of the types of anionic metabolites that promote such reactivity of Mn²⁺. Their probable roles in pathogen defense against the host immune response and in ROS-mediated signaling pathways are also areas that are worthy of serious investigation. Moreover, it is clear that these protective chemical processes can be harnessed for practical purposes.
抗氧化酶被认为为细胞提供了对抗活性氧(ROS)的关键保护。然而,许多生物体可以通过积累代谢物和 Mn²⁺来完全补偿这些酶防御的损失,这些代谢物和 Mn²⁺可以形成催化 Mn-抗氧化剂。积累的代谢物可以指导 Mn²⁺与超氧化物的反应性,并专门保护蛋白质免受氧化损伤。
越来越多的证据表明,Mn-Pi(正磷酸盐)复合物在生命的三个分支中都可以作为超氧化物的有效清除剂。此外,显然 Mn²⁺与碳酸盐、肽、核苷和有机酸形成的复合物也可以形成催化 Mn-抗氧化剂,这表明存在多种代谢途径来抵抗氧化应激。
哪些条件有利于利用 Mn-代谢物而不是酶的方法来去除 ROS?在强烈辐射应激下的 Deinococcus radiodurans 和缺乏抗氧化酶的 Lactobacillus plantarum 中,Mn-代谢物防御对于保护修复酶的活性至关重要。在其他微生物中,当酶抗氧化剂不足或失效时,Mn-抗氧化剂可以作为辅助保护。这些关于 Mn-抗氧化剂在原核生物应对氧化应激时的生存中起着关键作用的发现,与简单真核生物 Saccharomyces cerevisiae 中发展的趋势相平行。
磷酸盐、肽和有机酸只是促进 Mn²⁺这种反应性的阴离子代谢物类型的一个快照。它们在病原体防御宿主免疫反应和 ROS 介导的信号通路中的可能作用也是值得认真研究的领域。此外,很明显,这些保护化学过程可以被用于实际目的。