Suppr超能文献

急性髓系白血病干细胞和祖细胞的表观基因组。

The epigenome of AML stem and progenitor cells.

机构信息

Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Epigenetics. 2013 Jan;8(1):92-104. doi: 10.4161/epi.23243. Epub 2012 Dec 18.

Abstract

Acute myeloid leukemia (AML) is sustained by a population of cancer stem cells (CSCs or cancer-initiating cell). The mechanisms underlying switches from CSCs to non-CSCs in vivo remain to be understood. We address this issue in AML from the aspect of epigenetics using genome-wide screening for DNA methylation and selected histone modifications. We found no major differences in DNA methylation, especially in promoter CpG islands, between CSCs and non-CSCs. By contrast, we found thousands of genes that change H3K4me3 and/or H3K27me3 status between stem and progenitor cells as well as between progenitor and mature cells. Stem cell related pathways and proliferation or metabolism related pathways characterize genes differentially enriched for H3K4me3/H3K27me3 in stem and progenitor populations. Bivalent genes in stem cells are more plastic during differentiation and are more likely to lose H3K4me3 than to lose H3K27me3, consistent with increasingly closed chromatin state with differentiation. Our data indicates that histone modifications but not promoter DNA methylation are involved in switches from CSCs to non-CSCs in AML.

摘要

急性髓细胞白血病(AML)由一群癌症干细胞(CSC 或起始癌细胞)维持。体内 CSC 向非 CSC 转变的机制仍有待理解。我们从表观遗传学的角度,利用全基因组筛选 DNA 甲基化和组蛋白修饰,来研究 AML 中的这一问题。我们发现 CSC 和非 CSC 之间的 DNA 甲基化,尤其是启动子 CpG 岛,没有明显差异。相比之下,我们发现数千个基因的 H3K4me3 和/或 H3K27me3 状态在干细胞和祖细胞之间以及祖细胞和成熟细胞之间发生变化。与干细胞相关的通路以及与增殖或代谢相关的通路,可描述在干细胞和祖细胞群体中 H3K4me3/H3K27me3 差异富集的基因。分化过程中,干细胞中的双价基因更具可塑性,并且更有可能失去 H3K4me3 而不是失去 H3K27me3,这与分化过程中染色质状态逐渐关闭一致。我们的数据表明,组蛋白修饰而非启动子 DNA 甲基化参与了 AML 中 CSC 向非 CSC 的转变。

相似文献

1
The epigenome of AML stem and progenitor cells.
Epigenetics. 2013 Jan;8(1):92-104. doi: 10.4161/epi.23243. Epub 2012 Dec 18.
2
Signatures of polycomb repression and reduced H3K4 trimethylation are associated with p15INK4b DNA methylation in AML.
Blood. 2010 Apr 15;115(15):3098-108. doi: 10.1182/blood-2009-07-233858. Epub 2010 Feb 26.
3
Modifications of H3K4 methylation levels are associated with DNA hypermethylation in acute myeloid leukemia.
FEBS J. 2020 Mar;287(6):1155-1175. doi: 10.1111/febs.15086. Epub 2019 Oct 23.
5
Loss of H3K27 methylation identifies poor outcomes in adult-onset acute leukemia.
Clin Epigenetics. 2021 Jan 28;13(1):21. doi: 10.1186/s13148-021-01011-x.
8
MN1 overexpression is driven by loss of DNMT3B methylation activity in inv(16) pediatric AML.
Oncogene. 2018 Jan 4;37(1):107-115. doi: 10.1038/onc.2017.293. Epub 2017 Sep 11.
10
Low HOX gene expression in PML-RARα-positive leukemia results from suppressed histone demethylation.
Epigenetics. 2018;13(1):73-84. doi: 10.1080/15592294.2017.1413517. Epub 2018 Feb 7.

引用本文的文献

1
Targeting epigenetic alterations in cancer stem cells.
Front Mol Med. 2022 Sep 20;2:1011882. doi: 10.3389/fmmed.2022.1011882. eCollection 2022.
2
Properties of Leukemic Stem Cells in Regulating Drug Resistance in Acute and Chronic Myeloid Leukemias.
Biomedicines. 2022 Jul 30;10(8):1841. doi: 10.3390/biomedicines10081841.
3
HDAC Inhibitors: Dissecting Mechanisms of Action to Counter Tumor Heterogeneity.
Cancers (Basel). 2021 Jul 16;13(14):3575. doi: 10.3390/cancers13143575.
4
Epigenetic regulation of cancer stem cell formation and maintenance.
Int J Cancer. 2021 Jun 15;148(12):2884-2897. doi: 10.1002/ijc.33398. Epub 2020 Nov 30.
5
Stem cell programs in cancer initiation, progression, and therapy resistance.
Theranostics. 2020 Jul 9;10(19):8721-8743. doi: 10.7150/thno.41648. eCollection 2020.
6
The DNA methylation landscape of hematological malignancies: an update.
Mol Oncol. 2020 Aug;14(8):1616-1639. doi: 10.1002/1878-0261.12744. Epub 2020 Jul 3.
7
Molecular and epigenetic regulatory mechanisms of normal stem cell radiosensitivity.
Cell Death Discov. 2018 Dec 18;4:117. doi: 10.1038/s41420-018-0132-8. eCollection 2018.
8
Polyamine flux suppresses histone lysine demethylases and enhances expression in cancer stem cells.
Cell Death Discov. 2018 Nov 13;4:104. doi: 10.1038/s41420-018-0117-7. eCollection 2018.
9
Cancer stem cells and tumorigenesis.
Biophys Rep. 2018;4(4):178-188. doi: 10.1007/s41048-018-0062-2. Epub 2018 Aug 29.

本文引用的文献

1
Molecular mechanisms and potential functions of histone demethylases.
Nat Rev Mol Cell Biol. 2012 Apr 4;13(5):297-311. doi: 10.1038/nrm3327.
2
DNA methylation does not stably lock gene expression but instead serves as a molecular mark for gene silencing memory.
Cancer Res. 2012 Mar 1;72(5):1170-81. doi: 10.1158/0008-5472.CAN-11-3248. Epub 2012 Jan 4.
3
DNA-binding factors shape the mouse methylome at distal regulatory regions.
Nature. 2011 Dec 14;480(7378):490-5. doi: 10.1038/nature10716.
6
Epigenetic regulation of cell type-specific expression patterns in the human mammary epithelium.
PLoS Genet. 2011 Apr;7(4):e1001369. doi: 10.1371/journal.pgen.1001369. Epub 2011 Apr 21.
7
Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state.
Proc Natl Acad Sci U S A. 2011 May 10;108(19):7950-5. doi: 10.1073/pnas.1102454108. Epub 2011 Apr 15.
9
EGF signaling regulates the proliferation of intestinal stem cells in Drosophila.
Development. 2011 Mar;138(6):1045-55. doi: 10.1242/dev.056671. Epub 2011 Feb 9.
10
Open chromatin in pluripotency and reprogramming.
Nat Rev Mol Cell Biol. 2011 Jan;12(1):36-47. doi: 10.1038/nrm3036.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验