Suppr超能文献

利用高分辨率航空影像图绘制森林外树木图:基于像元和基于对象的分类方法比较。

Mapping trees outside forests using high-resolution aerial imagery: a comparison of pixel- and object-based classification approaches.

机构信息

Northern Research Station, USDA Forest Service, 1992 Folwell Avenue, St. Paul, MN, 55108, USA.

出版信息

Environ Monit Assess. 2013 Aug;185(8):6261-75. doi: 10.1007/s10661-012-3022-1. Epub 2012 Dec 20.

Abstract

Discrete trees and small groups of trees in nonforest settings are considered an essential resource around the world and are collectively referred to as trees outside forests (ToF). ToF provide important functions across the landscape, such as protecting soil and water resources, providing wildlife habitat, and improving farmstead energy efficiency and aesthetics. Despite the significance of ToF, forest and other natural resource inventory programs and geospatial land cover datasets that are available at a national scale do not include comprehensive information regarding ToF in the United States. Additional ground-based data collection and acquisition of specialized imagery to inventory these resources are expensive alternatives. As a potential solution, we identified two remote sensing-based approaches that use free high-resolution aerial imagery from the National Agriculture Imagery Program (NAIP) to map all tree cover in an agriculturally dominant landscape. We compared the results obtained using an unsupervised per-pixel classifier (independent component analysis-[ICA]) and an object-based image analysis (OBIA) procedure in Steele County, Minnesota, USA. Three types of accuracy assessments were used to evaluate how each method performed in terms of: (1) producing a county-level estimate of total tree-covered area, (2) correctly locating tree cover on the ground, and (3) how tree cover patch metrics computed from the classified outputs compared to those delineated by a human photo interpreter. Both approaches were found to be viable for mapping tree cover over a broad spatial extent and could serve to supplement ground-based inventory data. The ICA approach produced an estimate of total tree cover more similar to the photo-interpreted result, but the output from the OBIA method was more realistic in terms of describing the actual observed spatial pattern of tree cover.

摘要

非森林环境中的离散树木和小树木群被认为是全球范围内的重要资源,统称为森林外树木(ToF)。ToF 在景观中提供了重要的功能,例如保护土壤和水资源、提供野生动物栖息地以及提高农场的能源效率和美观度。尽管 ToF 意义重大,但森林和其他自然资源清查计划以及可在国家范围内获得的地理空间土地覆盖数据集并未包含美国有关 ToF 的综合信息。额外的地面基础数据收集和专门图像获取来清查这些资源是昂贵的替代方案。作为一种潜在的解决方案,我们确定了两种基于遥感的方法,这些方法利用来自国家农业图像计划(NAIP)的免费高分辨率航空图像来绘制农业主导景观中的所有树木覆盖。我们在 Steele County, Minnesota, USA 比较了使用无监督逐像素分类器(独立成分分析-[ICA])和基于对象的图像分析(OBIA)程序获得的结果。使用三种类型的准确性评估来评估每种方法在以下方面的表现:(1)生成县级总树木覆盖面积的估计值,(2)正确定位地面上的树木覆盖,以及(3)从分类输出计算的树木覆盖斑块指标与人类照片解释员划定的指标相比如何。这两种方法都被发现可以在广泛的空间范围内进行树木覆盖的映射,并且可以补充地面基础的清查数据。ICA 方法生成的树木总覆盖估计值更接近照片解释的结果,但 OBIA 方法的输出在描述实际观察到的树木覆盖空间模式方面更加真实。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验