Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
ACS Nano. 2013 Jan 22;7(1):732-9. doi: 10.1021/nn305029b. Epub 2012 Dec 31.
Imaging the three-dimensional atomic-scale structure of complex interfaces has been the goal of many recent studies, due to its importance to technologically relevant areas. Combining atom-probe tomography and aberration-corrected scanning transmission electron microscopy (STEM), we present an atomic-scale study of ultrathin (~5 nm) native oxide layers on niobium (Nb) and the formation of ordered niobium hydride phases near the oxide/Nb interface. Nb, an elemental type-II superconductor with the highest critical temperature (T(c) = 9.2 K), is the preferred material for superconducting radio frequency (SRF) cavities in next-generation particle accelerators. Nb exhibits high solubilities for oxygen and hydrogen, especially within the RF-field penetration depth, which is believed to result in SRF quality factor losses. STEM imaging and electron energy-loss spectroscopy followed by ultraviolet laser-assisted local-electrode atom-probe tomography on the same needle-like sample reveals the NbO(2), Nb(2)O(5), NbO, Nb stacking sequence; annular bright-field imaging is used to visualize directly hydrogen atoms in bulk β-NbH.
由于对技术相关领域的重要性,近年来,人们一直致力于对复杂界面的三维原子尺度结构进行成像。通过结合原子探针层析术和像差校正扫描透射电子显微镜(STEM),我们对铌(Nb)上超薄(约 5nm)的本征氧化层以及氧化层/Nb 界面附近有序铌氢化物相的形成进行了原子尺度的研究。Nb 是一种元素型 II 型超导体,具有最高临界温度(Tc=9.2K),是下一代粒子加速器中超导射频(SRF)腔的首选材料。Nb 对氧和氢的溶解度很高,特别是在射频场穿透深度范围内,这被认为会导致超导射频品质因数损耗。在同一针状样品上进行 STEM 成像和电子能量损失光谱学以及随后的紫外激光辅助局部电极原子探针层析术,揭示了 NbO(2)、Nb(2)O(5)、NbO、Nb 堆叠序列;环形明场成像用于直接可视化体相β-NbH 中的氢原子。