Suppr超能文献

纳米尺度分析卡泊芬净诱导白念珠菌细胞表面重塑。

Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans.

机构信息

Université catholique de Louvain, Institute of Life Sciences & Institute of Condensed Matter and Nanosciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium.

出版信息

Nanoscale. 2013 Feb 7;5(3):1105-15. doi: 10.1039/c2nr33215a. Epub 2012 Dec 21.

Abstract

The advent of fungal pathogens that are resistant to the classic repertoire of antifungal drugs has increased the need for new therapeutic agents. A prominent example of such a novel compound is caspofungin, known to alter cell wall biogenesis by inhibiting β-1,3-D-glucan synthesis. Although much progress has been made in understanding the mechanism of action of caspofungin, little is known about its influence on the biophysical properties of the fungal cells. Here, we use atomic force microscopy (AFM) to demonstrate that caspofungin induces major remodelling of the cell surface properties of Candida albicans. Caspofungin causes major morphological and structural alterations of the cells, which correlate with a decrease of the cell wall mechanical strength. Moreover, we find that the drug induces the massive exposure of the cell adhesion protein Als1 on the cell surface and leads to increased cell surface hydrophobicity, two features that trigger cell aggregation. This behaviour is not observed in yeast species lacking Als1, demonstrating the key role that the protein plays in determining the aggregation phenotype of C. albicans. The results show that AFM opens up new avenues for understanding the molecular bases of microbe-drug interactions and for developing new therapeutic agents.

摘要

真菌病原体对经典抗真菌药物的耐药性的出现增加了对新治疗药物的需求。此类新型化合物的一个突出例子是卡泊芬净,已知其通过抑制β-1,3-D-葡聚糖合成来改变细胞壁生物发生。尽管在理解卡泊芬净的作用机制方面已经取得了很大进展,但对其对真菌细胞生物物理特性的影响知之甚少。在这里,我们使用原子力显微镜 (AFM) 证明卡泊芬净诱导白色念珠菌细胞表面特性的重大重塑。卡泊芬净导致细胞的主要形态和结构改变,这与细胞壁机械强度的降低相关。此外,我们发现该药物诱导细胞表面粘附蛋白 Als1 的大量暴露,并导致细胞表面疏水性增加,这两个特征触发细胞聚集。在缺乏 Als1 的酵母物种中观察不到这种行为,这表明该蛋白在决定白色念珠菌聚集表型方面起着关键作用。结果表明,AFM 为理解微生物-药物相互作用的分子基础以及开发新的治疗药物开辟了新途径。

相似文献

1
Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans.
Nanoscale. 2013 Feb 7;5(3):1105-15. doi: 10.1039/c2nr33215a. Epub 2012 Dec 21.
2
Nanoscale effects of caspofungin against two yeast species, Saccharomyces cerevisiae and Candida albicans.
Antimicrob Agents Chemother. 2013 Aug;57(8):3498-506. doi: 10.1128/AAC.00105-13. Epub 2013 May 13.
3
Efg1 Controls caspofungin-induced cell aggregation of Candida albicans through the adhesin Als1.
Eukaryot Cell. 2011 Dec;10(12):1694-704. doi: 10.1128/EC.05187-11. Epub 2011 Oct 28.
4
Caspofungin kills Candida albicans by causing both cellular apoptosis and necrosis.
Antimicrob Agents Chemother. 2013 Jan;57(1):326-32. doi: 10.1128/AAC.01366-12. Epub 2012 Oct 31.
6
Caspofungin-induced β(1,3)-glucan exposure in is driven by increased chitin levels.
mBio. 2023 Aug 31;14(4):e0007423. doi: 10.1128/mbio.00074-23. Epub 2023 Jun 28.
7
Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment.
PLoS Pathog. 2008 Dec;4(12):e1000227. doi: 10.1371/journal.ppat.1000227. Epub 2008 Dec 5.
8
Synergy of caspofungin with human polymorphonuclear granulocytes for killing Candida albicans.
Antimicrob Agents Chemother. 2010 Sep;54(9):3964-6. doi: 10.1128/AAC.01780-09. Epub 2010 Jun 28.
9
AFM combined to ATR-FTIR reveals Candida cell wall changes under caspofungin treatment.
Nanoscale. 2017 Sep 21;9(36):13731-13738. doi: 10.1039/c7nr02170d.

引用本文的文献

3
Helium Cold Atmospheric Plasma Causes Morphological and Biochemical Alterations in Cells.
Molecules. 2023 Dec 3;28(23):7919. doi: 10.3390/molecules28237919.
5
AFM evaluation of a humanized recombinant antibody affecting cell wall and stability.
RSC Adv. 2023 Feb 20;13(9):6130-6142. doi: 10.1039/d2ra07217c. eCollection 2023 Feb 14.
7
Caspofungin resistance in Candida albicans: genetic factors and synergistic compounds for combination therapies.
Braz J Microbiol. 2022 Sep;53(3):1101-1113. doi: 10.1007/s42770-022-00739-9. Epub 2022 Mar 29.
9
Back to Nature: Combating Biofilm, Phospholipase and Hemolysin Using Plant Essential Oils.
Antibiotics (Basel). 2021 Jan 15;10(1):81. doi: 10.3390/antibiotics10010081.
10
Imaging of Candida albicans Hyphal Growth via Atomic Force Microscopy.
mSphere. 2020 Nov 4;5(6):e00946-20. doi: 10.1128/mSphere.00946-20.

本文引用的文献

1
Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment.
Am J Med. 2012 Jan;125(1 Suppl):S3-13. doi: 10.1016/j.amjmed.2011.11.001.
2
Candida albicans morphogenesis and host defence: discriminating invasion from colonization.
Nat Rev Microbiol. 2011 Dec 12;10(2):112-22. doi: 10.1038/nrmicro2711.
3
Strengthening relationships: amyloids create adhesion nanodomains in yeasts.
Trends Microbiol. 2012 Feb;20(2):59-65. doi: 10.1016/j.tim.2011.10.002. Epub 2011 Nov 16.
4
Efg1 Controls caspofungin-induced cell aggregation of Candida albicans through the adhesin Als1.
Eukaryot Cell. 2011 Dec;10(12):1694-704. doi: 10.1128/EC.05187-11. Epub 2011 Oct 28.
6
Structural basis for the broad specificity to host-cell ligands by the pathogenic fungus Candida albicans.
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15775-9. doi: 10.1073/pnas.1103496108. Epub 2011 Sep 6.
7
A role for amyloid in cell aggregation and biofilm formation.
PLoS One. 2011 Mar 8;6(3):e17632. doi: 10.1371/journal.pone.0017632.
8
Genetic control of Candida albicans biofilm development.
Nat Rev Microbiol. 2011 Feb;9(2):109-18. doi: 10.1038/nrmicro2475. Epub 2010 Dec 29.
9
Changes in cell wall synthesis and ultrastructure during paradoxical growth effect of caspofungin on four different Candida species.
Antimicrob Agents Chemother. 2011 Jan;55(1):302-10. doi: 10.1128/AAC.00633-10. Epub 2010 Nov 8.
10
Force-induced formation and propagation of adhesion nanodomains in living fungal cells.
Proc Natl Acad Sci U S A. 2010 Nov 30;107(48):20744-9. doi: 10.1073/pnas.1013893107. Epub 2010 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验