Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, USA.
J Mech Behav Biomed Mater. 2013 Mar;19:61-74. doi: 10.1016/j.jmbbm.2012.10.016. Epub 2012 Nov 9.
Damage to cartilage caused by injury or disease can lead to pain and loss of mobility, diminishing one's quality of life. Because cartilage has a limited capacity for self-repair, tissue engineering strategies, such as cells encapsulated in synthetic hydrogels, are being investigated as a means to restore the damaged cartilage. However, strategies to date are suboptimal in part because designing degradable hydrogels is complicated by structural and temporal complexities of the gel and evolving tissue along multiple length scales. To address this problem, this study proposes a multi-scale mechanical model using a triphasic formulation (solid, fluid, unbound matrix molecules) based on a single chondrocyte releasing extracellular matrix molecules within a degrading hydrogel. This model describes the key players (cells, proteoglycans, collagen) of the biological system within the hydrogel encompassing different length scales. Two mechanisms are included: temporal changes of bulk properties due to hydrogel degradation, and matrix transport. Numerical results demonstrate that the temporal change of bulk properties is a decisive factor in the diffusion of unbound matrix molecules through the hydrogel. Transport of matrix molecules in the hydrogel contributes both to the development of the pericellular matrix and the extracellular matrix and is dependent on the relative size of matrix molecules and the hydrogel mesh. The numerical results also demonstrate that osmotic pressure, which leads to changes in mesh size, is a key parameter for achieving a larger diffusivity for matrix molecules in the hydrogel. The numerical model is confirmed with experimental results of matrix synthesis by chondrocytes in biodegradable poly(ethylene glycol)-based hydrogels. This model may ultimately be used to predict key hydrogel design parameters towards achieving optimal cartilage growth.
损伤或疾病导致的软骨损伤可导致疼痛和活动能力丧失,降低生活质量。由于软骨自我修复能力有限,因此正在研究组织工程策略,如包裹在合成水凝胶中的细胞,作为修复受损软骨的一种手段。然而,迄今为止的策略并不理想,部分原因是设计可降解水凝胶的结构和时间复杂性,以及沿多个长度尺度演变的组织。为了解决这个问题,本研究提出了一个使用三相配方(固体、流体、未结合的基质分子)的多尺度力学模型,该模型基于单个软骨细胞在降解水凝胶中释放细胞外基质分子。该模型描述了水凝胶中生物系统的关键参与者(细胞、蛋白聚糖、胶原),涵盖了不同的长度尺度。包含两种机制:由于水凝胶降解导致的整体性质的时间变化,以及基质传输。数值结果表明,整体性质的时间变化是未结合的基质分子通过水凝胶扩散的决定性因素。基质分子在水凝胶中的传输既有助于细胞外基质的形成,也有助于细胞外基质的形成,并且取决于基质分子和水凝胶网格的相对大小。数值结果还表明,渗透压会导致网格尺寸发生变化,是实现水凝胶中基质分子更大扩散性的关键参数。该数值模型通过软骨细胞在可生物降解的聚乙二醇基水凝胶中合成基质的实验结果得到了验证。该模型最终可用于预测关键水凝胶设计参数,以实现最佳软骨生长。