Computational Chemistry Unit, RIKEN Advanced Institute for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
J Chem Phys. 2012 Dec 28;137(24):244105. doi: 10.1063/1.4772401.
Recently, we developed a Gaussian attenuation (Gau) scheme for solid-state bandgap calculation that uses a two-electron Gaussian function operator to include short-range Hartree-Fock exchange and combined it with the long-range Perdew-Burke-Ernzerhof (PBE) exchange correlation functional (Gau-PBE). Here, we apply the Ernzerhof-Perdew exchange hole (EP) model of PBE (PBEh) as a long-range density functional theory (DFT) exchange part to the Gau scheme (Gau-PBEh). We found that applying the EP model to the Gau scheme improves atomization energies and solid-state lattice constants and that the exact exchange included using the Gau scheme plays a critical role in simultaneously reproducing solid-state bandgaps and barrier heights. In addition, Gau-PBEh takes nearly the same computation time for bandgap calculations as Gau-PBE, implying less than 60% of the time taken in Heyd-Scuseria-Ernzerhof hybrid DFT functional calculations.
最近,我们开发了一种用于固态能带计算的高斯衰减(Gau)方案,该方案使用双电子高斯函数算符来包含短程 Hartree-Fock 交换,并将其与长程 Perdew-Burke-Ernzerhof(PBE)交换相关函数(Gau-PBE)相结合。在这里,我们将 PBE 的 Ernzerhof-Perdew 交换空穴(EP)模型(PBEh)用作 Gau 方案(Gau-PBEh)的长程密度泛函理论(DFT)交换部分。我们发现,将 EP 模型应用于 Gau 方案可以提高原子化能和固态晶格常数,并且使用 Gau 方案包含的精确交换在同时再现固态能带隙和势垒高度方面起着关键作用。此外,Gau-PBEh 用于带隙计算的计算时间几乎与 Gau-PBE 相同,这意味着比 Heyd-Scuseria-Ernzerhof 混合 DFT 函数计算所花费的时间少 60%。