Laboratory of Chemistry and Cell Biology, New York, New York 10065, USA.
Protein Sci. 2013 Mar;22(3):287-95. doi: 10.1002/pro.2210. Epub 2013 Jan 27.
Post-translational modifications (PTM) of proteins can control complex and dynamic cellular processes via regulating interactions between key proteins. To understand these regulatory mechanisms, it is critical that we can profile the PTM-dependent protein-protein interactions. However, identifying these interactions can be very difficult using available approaches, as PTMs can be dynamic and often mediate relatively weak protein-protein interactions. We have recently developed CLASPI (cross-linking-assisted and stable isotope labeling in cell culture-based protein identification), a chemical proteomics approach to examine protein-protein interactions mediated by methylation in human cell lysates. Here, we report three extensions of the CLASPI approach. First, we show that CLASPI can be used to analyze methylation-dependent protein-protein interactions in lysates of fission yeast, a genetically tractable model organism. For these studies, we examined trimethylated histone H3 lysine-9 (H3K9Me₃)-dependent protein-protein interactions. Second, we demonstrate that CLASPI can be used to examine phosphorylation-dependent protein-protein interactions. In particular, we profile proteins recognizing phosphorylated histone H3 threonine-3 (H3T3-Phos), a mitotic histone "mark" appearing exclusively during cell division. Our approach identified survivin, the only known H3T3-Phos-binding protein, as well as other proteins, such as MCAK and KIF2A, that are likely to be involved in weak but selective interactions with this histone phosphorylation "mark". Finally, we demonstrate that the CLASPI approach can be used to study the interplay between histone H3T3-Phos and trimethylation on the adjacent residue lysine 4 (H3K4Me₃). Together, our findings indicate the CLASPI approach can be broadly applied to profile protein-protein interactions mediated by PTMs.
蛋白质的翻译后修饰 (PTM) 可以通过调节关键蛋白质之间的相互作用来控制复杂和动态的细胞过程。为了理解这些调节机制,我们必须能够描绘出依赖 PTM 的蛋白质-蛋白质相互作用。然而,使用现有的方法来识别这些相互作用可能非常困难,因为 PTM 可能是动态的,并且经常介导相对较弱的蛋白质-蛋白质相互作用。我们最近开发了 CLASPI(交联辅助和基于细胞培养的稳定同位素标记的蛋白质鉴定),这是一种化学蛋白质组学方法,用于研究人细胞裂解物中甲基化介导的蛋白质-蛋白质相互作用。在这里,我们报告了 CLASPI 方法的三个扩展。首先,我们表明 CLASPI 可用于分析裂殖酵母裂解物中依赖于甲基化的蛋白质-蛋白质相互作用,裂殖酵母是一种遗传上可操作的模式生物。对于这些研究,我们检查了三甲基化组蛋白 H3 赖氨酸-9(H3K9Me3)依赖性蛋白质-蛋白质相互作用。其次,我们证明 CLASPI 可用于研究依赖于磷酸化的蛋白质-蛋白质相互作用。特别是,我们对识别磷酸化组蛋白 H3 苏氨酸-3(H3T3-Phos)的蛋白质进行了分析,H3T3-Phos 是一种有丝分裂组蛋白“标记”,仅在细胞分裂期间出现。我们的方法鉴定了 survivin,这是唯一已知的 H3T3-Phos 结合蛋白,以及其他可能与这种组蛋白磷酸化“标记”弱但选择性相互作用的蛋白质,如 MCAK 和 KIF2A。最后,我们证明了 CLASPI 方法可用于研究 H3T3-Phos 与相邻残基赖氨酸 4 上的三甲基化(H3K4Me3)之间的相互作用。总之,我们的研究结果表明,CLASPI 方法可以广泛应用于描绘依赖 PTM 的蛋白质-蛋白质相互作用。