Suppr超能文献

医学图像分割的简化标注过程

Simplified labeling process for medical image segmentation.

作者信息

Gao Mingchen, Huang Junzhou, Huang Xiaolei, Zhang Shaoting, Metaxas Dimitris N

机构信息

CBIM Center, Rutgers University, Piscataway, NJ 08554, USA.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 2):387-94. doi: 10.1007/978-3-642-33418-4_48.

Abstract

Image segmentation plays a crucial role in many medical imaging applications by automatically locating the regions of interest. Typically supervised learning based segmentation methods require a large set of accurately labeled training data. However, thel labeling process is tedious, time consuming and sometimes not necessary. We propose a robust logistic regression algorithm to handle label outliers such that doctors do not need to waste time on precisely labeling images for training set. To validate its effectiveness and efficiency, we conduct carefully designed experiments on cervigram image segmentation while there exist label outliers. Experimental results show that the proposed robust logistic regression algorithms achieve superior performance compared to previous methods, which validates the benefits of the proposed algorithms.

摘要

图像分割通过自动定位感兴趣区域在许多医学成像应用中发挥着关键作用。通常,基于监督学习的分割方法需要大量准确标注的训练数据。然而,标注过程繁琐、耗时,有时甚至没有必要。我们提出一种鲁棒逻辑回归算法来处理标签异常值,这样医生就无需在为训练集精确标注图像上浪费时间。为了验证其有效性和效率,我们在存在标签异常值的宫颈图像分割上进行了精心设计的实验。实验结果表明,与先前方法相比,所提出的鲁棒逻辑回归算法具有卓越的性能,这验证了所提算法的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验