Suppr超能文献

电生理连接网络的主成分分析

Dominant component analysis of electrophysiological connectivity networks.

作者信息

Ghanbari Yasser, Bloy Luke, Batmanghelich Kayhan, Roberts Timothy P L, Verma Ragini

机构信息

Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 3):231-8. doi: 10.1007/978-3-642-33454-2_29.

Abstract

Connectivity matrices obtained from various modalities (DTI, MEG and fMRI) provide a unique insight into brain processes. Their high dimensionality necessitates the development of methods for population-based statistics, in the face of small sample sizes. In this paper, we present such a method applicable to functional connectivity networks, based on identifying the basis of dominant connectivity components that characterize the patterns of brain pathology and population variation. Projection of individual connectivity matrices into this basis allows for dimensionality reduction, facilitating subsequent statistical analysis. We find dominant components for a collection of connectivity matrices by using the projective non-negative component analysis technique which ensures that the components have non-negative elements and are non-negatively combined to obtain individual subject networks, facilitating interpretation. We demonstrate the feasibility of our novel framework by applying it to simulated connectivity matrices as well as to a clinical study using connectivity matrices derived from resting state magnetoencephalography (MEG) data in a population of subjects diagnosed with autism spectrum disorder (ASD).

摘要

从各种模态(弥散张量成像、脑磁图和功能磁共振成像)获得的连通性矩阵为大脑过程提供了独特的见解。面对小样本量,它们的高维度性使得基于总体的统计方法的开发成为必要。在本文中,我们提出了一种适用于功能连通性网络的方法,该方法基于识别主导连通性成分的基础,这些成分表征了脑部病变模式和总体变异。将个体连通性矩阵投影到这个基础上可以实现降维,便于后续的统计分析。我们通过使用投影非负成分分析技术来找到连通性矩阵集合的主导成分,该技术确保成分具有非负元素并且以非负方式组合以获得个体受试者网络,便于解释。我们通过将我们的新框架应用于模拟连通性矩阵以及一项临床研究来证明其可行性,该临床研究使用了来自被诊断患有自闭症谱系障碍(ASD)的受试者群体的静息态脑磁图(MEG)数据得出的连通性矩阵。

相似文献

1
Dominant component analysis of electrophysiological connectivity networks.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):231-8. doi: 10.1007/978-3-642-33454-2_29.
2
Functionally driven brain networks using multi-layer graph clustering.
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):113-20. doi: 10.1007/978-3-319-10443-0_15.
4
Graph theoretical analysis of resting-state MEG data: Identifying interhemispheric connectivity and the default mode.
Neuroimage. 2014 Aug 1;96:88-94. doi: 10.1016/j.neuroimage.2014.03.065. Epub 2014 Mar 31.
5
Locality preserving non-negative basis learning with graph embedding.
Inf Process Med Imaging. 2013;23:316-27. doi: 10.1007/978-3-642-38868-2_27.
6
Using multiparametric data with missing features for learning patterns of pathology.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):468-75. doi: 10.1007/978-3-642-33454-2_58.
7
Connectivity subnetwork learning for pathology and developmental variations.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):90-7. doi: 10.1007/978-3-642-40811-3_12.
8
Identification of MCI using optimal sparse MAR modeled effective connectivity networks.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):319-327. doi: 10.1007/978-3-642-40763-5_40.
9
Salience network-based classification and prediction of symptom severity in children with autism.
JAMA Psychiatry. 2013 Aug;70(8):869-79. doi: 10.1001/jamapsychiatry.2013.104.

引用本文的文献

1
Frequency-specific directed interactions in the human brain network for language.
Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):8083-8088. doi: 10.1073/pnas.1703155114. Epub 2017 Jul 11.
2
Atypical Bilateral Brain Synchronization in the Early Stage of Human Voice Auditory Processing in Young Children with Autism.
PLoS One. 2016 Apr 13;11(4):e0153077. doi: 10.1371/journal.pone.0153077. eCollection 2016.
3
Finding imaging patterns of structural covariance via Non-Negative Matrix Factorization.
Neuroimage. 2015 Mar;108:1-16. doi: 10.1016/j.neuroimage.2014.11.045. Epub 2014 Dec 12.
5
Locality preserving non-negative basis learning with graph embedding.
Inf Process Med Imaging. 2013;23:316-27. doi: 10.1007/978-3-642-38868-2_27.
6
Connectivity subnetwork learning for pathology and developmental variations.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):90-7. doi: 10.1007/978-3-642-40811-3_12.
7
Joint analysis of band-specific functional connectivity and signal complexity in autism.
J Autism Dev Disord. 2015 Feb;45(2):444-60. doi: 10.1007/s10803-013-1915-7.

本文引用的文献

2
Generative-discriminative basis learning for medical imaging.
IEEE Trans Med Imaging. 2012 Jan;31(1):51-69. doi: 10.1109/TMI.2011.2162961. Epub 2011 Jul 25.
3
Extracting biomarkers of autism from MEG resting-state functional connectivity networks.
Comput Biol Med. 2011 Dec;41(12):1166-77. doi: 10.1016/j.compbiomed.2011.04.004. Epub 2011 May 17.
4
A big-world network in ASD: dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections.
Neuropsychologia. 2011 Jan;49(2):254-63. doi: 10.1016/j.neuropsychologia.2010.11.024. Epub 2010 Nov 24.
5
Brain connectivity is not only lower but different in schizophrenia: a combined anatomical and functional approach.
Biol Psychiatry. 2010 Jul 1;68(1):61-9. doi: 10.1016/j.biopsych.2010.03.035. Epub 2010 May 23.
6
Linear and nonlinear projective nonnegative matrix factorization.
IEEE Trans Neural Netw. 2010 May;21(5):734-49. doi: 10.1109/TNN.2010.2041361. Epub 2010 Mar 25.
8
Synchronization likelihood with explicit time-frequency priors.
Neuroimage. 2006 Dec;33(4):1117-25. doi: 10.1016/j.neuroimage.2006.06.066. Epub 2006 Oct 3.
10
Independent component analysis: algorithms and applications.
Neural Netw. 2000 May-Jun;13(4-5):411-30. doi: 10.1016/s0893-6080(00)00026-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验