Ghanbari Yasser, Bloy Luke, Batmanghelich Kayhan, Roberts Timothy P L, Verma Ragini
Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, USA.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):231-8. doi: 10.1007/978-3-642-33454-2_29.
Connectivity matrices obtained from various modalities (DTI, MEG and fMRI) provide a unique insight into brain processes. Their high dimensionality necessitates the development of methods for population-based statistics, in the face of small sample sizes. In this paper, we present such a method applicable to functional connectivity networks, based on identifying the basis of dominant connectivity components that characterize the patterns of brain pathology and population variation. Projection of individual connectivity matrices into this basis allows for dimensionality reduction, facilitating subsequent statistical analysis. We find dominant components for a collection of connectivity matrices by using the projective non-negative component analysis technique which ensures that the components have non-negative elements and are non-negatively combined to obtain individual subject networks, facilitating interpretation. We demonstrate the feasibility of our novel framework by applying it to simulated connectivity matrices as well as to a clinical study using connectivity matrices derived from resting state magnetoencephalography (MEG) data in a population of subjects diagnosed with autism spectrum disorder (ASD).
从各种模态(弥散张量成像、脑磁图和功能磁共振成像)获得的连通性矩阵为大脑过程提供了独特的见解。面对小样本量,它们的高维度性使得基于总体的统计方法的开发成为必要。在本文中,我们提出了一种适用于功能连通性网络的方法,该方法基于识别主导连通性成分的基础,这些成分表征了脑部病变模式和总体变异。将个体连通性矩阵投影到这个基础上可以实现降维,便于后续的统计分析。我们通过使用投影非负成分分析技术来找到连通性矩阵集合的主导成分,该技术确保成分具有非负元素并且以非负方式组合以获得个体受试者网络,便于解释。我们通过将我们的新框架应用于模拟连通性矩阵以及一项临床研究来证明其可行性,该临床研究使用了来自被诊断患有自闭症谱系障碍(ASD)的受试者群体的静息态脑磁图(MEG)数据得出的连通性矩阵。