Suppr超能文献

用于纵向数据分析的时间约束组稀疏学习

Temporally-constrained group sparse learning for longitudinal data analysis.

作者信息

Zhang Daoqiang, Liu Jun, Shen Dinggang

机构信息

Dept. of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 3):264-71. doi: 10.1007/978-3-642-33454-2_33.

Abstract

Sparse learning has recently received increasing attentions in neuroimaging research such as brain disease diagnosis and progression. Most existing studies focus on cross-sectional analysis, i.e., learning a sparse model based on single time-point of data. However, in some brain imaging applications, multiple time-points of data are often available, thus longitudinal analysis can be performed to better uncover the underlying disease progression patterns. In this paper, we propose a novel temporally-constrained group sparse learning method aiming for longitudinal analysis with multiple time-points of data. Specifically, for each time-point, we train a sparse linear regression model by using the imaging data and the corresponding responses, and further use the group regularization to group the weights corresponding to the same brain region across different time-points together. Moreover, to reflect the smooth changes between adjacent time-points of data, we also include two smoothness regularization terms into the objective function, i.e., one fused smoothness term which requires the differences between two successive weight vectors from adjacent time-points should be small, and another output smoothness term which requires the differences between outputs of two successive models from adjacent time-points should also be small. We develop an efficient algorithm to solve the new objective function with both group-sparsity and smoothness regularizations. We validate our method through estimation of clinical cognitive scores using imaging data at multiple time-points which are available in the Alzheimer's disease neuroimaging initiative (ADNI) database.

摘要

稀疏学习最近在诸如脑疾病诊断和病情进展等神经成像研究中受到越来越多的关注。大多数现有研究集中在横断面分析,即基于单时间点数据学习稀疏模型。然而,在一些脑成像应用中,通常可获得多个时间点的数据,因此可以进行纵向分析以更好地揭示潜在的疾病进展模式。在本文中,我们提出了一种新颖的时间约束组稀疏学习方法,旨在对多个时间点的数据进行纵向分析。具体而言,对于每个时间点,我们通过使用成像数据和相应的响应来训练一个稀疏线性回归模型,并进一步使用组正则化将不同时间点对应于同一脑区的权重聚集在一起。此外,为了反映数据相邻时间点之间的平滑变化,我们还在目标函数中纳入了两个平滑正则化项,即一个融合平滑项,它要求相邻时间点的两个连续权重向量之间的差异应较小,以及另一个输出平滑项,它要求相邻时间点的两个连续模型的输出之间的差异也应较小。我们开发了一种高效算法来求解具有组稀疏性和平滑性正则化的新目标函数。我们通过使用阿尔茨海默病神经成像计划(ADNI)数据库中多个时间点的成像数据估计临床认知分数来验证我们的方法。

相似文献

1
Temporally-constrained group sparse learning for longitudinal data analysis.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):264-71. doi: 10.1007/978-3-642-33454-2_33.
2
Temporally Constrained Group Sparse Learning for Longitudinal Data Analysis in Alzheimer's Disease.
IEEE Trans Biomed Eng. 2017 Jan;64(1):238-249. doi: 10.1109/TBME.2016.2553663. Epub 2016 Apr 13.
3
Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer's disease.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):275-83. doi: 10.1007/978-3-642-40811-3_35.
4
Quantifying anatomical shape variations in neurological disorders.
Med Image Anal. 2014 Apr;18(3):616-33. doi: 10.1016/j.media.2014.01.001. Epub 2014 Feb 11.
5
Large deformation image classification using generalized locality-constrained linear coding.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):292-9. doi: 10.1007/978-3-642-40811-3_37.
6
Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases.
Neuroimage. 2016 Nov 1;141:542-555. doi: 10.1016/j.neuroimage.2016.07.020. Epub 2016 Jul 15.
7
Simultaneous and consistent labeling of longitudinal dynamic developing cortical surfaces in infants.
Med Image Anal. 2014 Dec;18(8):1274-89. doi: 10.1016/j.media.2014.06.007. Epub 2014 Jun 25.
8
CLASSIC: consistent longitudinal alignment and segmentation for serial image computing.
Inf Process Med Imaging. 2005;19:101-13. doi: 10.1007/11505730_9.
9
Simultaneous Longitudinal Registration with Group-Wise Similarity Prior.
Inf Process Med Imaging. 2015;24:746-57. doi: 10.1007/978-3-319-19992-4_59.
10
Analysis of serial magnetic resonance images of mouse brains using image registration.
Neuroimage. 2009 Feb 1;44(3):692-700. doi: 10.1016/j.neuroimage.2008.10.016. Epub 2008 Oct 29.

引用本文的文献

1
Hierarchical multi-class Alzheimer's disease diagnostic framework using imaging and clinical features.
Front Aging Neurosci. 2022 Aug 10;14:935055. doi: 10.3389/fnagi.2022.935055. eCollection 2022.
2
Multi-task exclusive relationship learning for alzheimer's disease progression prediction with longitudinal data.
Med Image Anal. 2019 Apr;53:111-122. doi: 10.1016/j.media.2019.01.007. Epub 2019 Jan 30.
4
A Systematic Review of Longitudinal Studies Which Measure Alzheimer's Disease Biomarkers.
J Alzheimers Dis. 2017;59(4):1359-1379. doi: 10.3233/JAD-170261.
5
Longitudinal Analysis for Disease Progression via Simultaneous Multi-Relational Temporal-Fused Learning.
Front Aging Neurosci. 2017 Mar 3;9:6. doi: 10.3389/fnagi.2017.00006. eCollection 2017.
6
Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans.
Brain Struct Funct. 2016 Nov;221(8):3979-3995. doi: 10.1007/s00429-015-1140-6. Epub 2015 Nov 24.

本文引用的文献

1
Identifying Neuroimaging and Proteomic Biomarkers for MCI and AD via the Elastic Net.
Multimodal Brain Image Anal (2011). 2011 Sep;7012:27-34. doi: 10.1007/978-3-642-24446-9_4.
2
Ensemble sparse classification of Alzheimer's disease.
Neuroimage. 2012 Apr 2;60(2):1106-16. doi: 10.1016/j.neuroimage.2012.01.055. Epub 2012 Jan 14.
3
Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):115-23. doi: 10.1007/978-3-642-23626-6_15.
4
Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease.
Neuroimage. 2012 Jan 16;59(2):895-907. doi: 10.1016/j.neuroimage.2011.09.069. Epub 2011 Oct 4.
5
Generalized sparse regularization with application to fMRI brain decoding.
Inf Process Med Imaging. 2011;22:612-23. doi: 10.1007/978-3-642-22092-0_50.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验