Suppr超能文献

免疫机制和肺部微生物组紊乱对慢性细菌性肺部感染和支气管扩张的影响。

Immune mechanisms and the impact of the disrupted lung microbiome in chronic bacterial lung infection and bronchiectasis.

机构信息

Lung Immunology Group, Section of Infectious Diseases and Immunity, Hammersmith Campus, Department of Medicine, Centre for Respiratory Infection, Imperial College London, UK.

出版信息

Clin Exp Immunol. 2013 Feb;171(2):117-23. doi: 10.1111/cei.12003.

Abstract

Recent studies analysing immunogenetics and immune mechanisms controlling susceptibility to chronic bacterial infection in bronchiectasis implicate dysregulated immunity in conjunction with chronic bacterial infection. Bronchiectasis is a structural pathological end-point with many causes and disease associations. In about half of cases it is termed idiopathic, because it is of unknown aetiology. Bronchiectasis is proposed to result from a 'vicious cycle' of chronic bacterial infection and dysregulated inflammation. Paradoxically, both immune deficiency and excess immunity, either in the form of autoimmunity or excessive inflammatory activation, can predispose to disease. It appears to be a part of the spectrum of inflammatory, autoimmune and atopic conditions that have increased in prevalence through the 20th century, attributed variously to the hygiene hypothesis or the 'missing microbiota'. Immunogenetic studies showing a strong association with human leucocyte antigen (HLA)-Cw*03 and HLA-C group 1 homozygosity and combinational analysis of HLA-C and killer immunoglobulin-like receptors (KIR) genes suggests a shift towards activation of natural killer (NK) cells leading to lung damage. The association with HLA-DR1, DQ5 implicates a role for CD4 T cells, possibly operating through influence on susceptibility to specific pathogens. We hypothesize that disruption of the lung microbial ecosystem, by infection, inflammation and/or antibiotic therapy, creates a disturbed, simplified, microbial community ('disrupted microbiota') with downstream consequences for immune function. These events, acting with excessive NK cell activation, create a highly inflammatory lung environment that, in turn, permits the further establishment and maintenance of chronic infection dominated by microbial pathogens. This review discusses the implication of these concepts for the development of therapeutic interventions.

摘要

最近的研究分析了免疫遗传学和控制支气管扩张症慢性细菌感染易感性的免疫机制,提示免疫失调与慢性细菌感染有关。支气管扩张症是一种结构性病理终点,有多种原因和疾病关联。大约一半的病例被称为特发性,因为其病因不明。支气管扩张症被认为是由慢性细菌感染和免疫失调炎症的“恶性循环”引起的。矛盾的是,免疫缺陷和过度免疫(无论是自身免疫还是过度炎症激活的形式)都可能导致疾病。它似乎是炎症、自身免疫和特应性疾病谱的一部分,这些疾病在 20 世纪的发病率有所增加,归因于卫生假说或“缺失的微生物群”。免疫遗传学研究表明,人类白细胞抗原(HLA)-Cw*03 和 HLA-C 组 1 纯合性与疾病强烈相关,HLA-C 和杀伤细胞免疫球蛋白样受体(KIR)基因的组合分析表明,自然杀伤(NK)细胞的激活增加,导致肺部损伤。与 HLA-DR1、DQ5 的关联表明 CD4 T 细胞的作用可能通过对特定病原体易感性的影响发挥作用。我们假设,感染、炎症和/或抗生素治疗会破坏肺部微生物生态系统,导致微生物群落失调、简化,进而影响免疫功能。这些事件与过度 NK 细胞激活一起,导致高度炎症性肺部环境,进而允许进一步建立和维持以微生物病原体为主的慢性感染。本文讨论了这些概念对治疗干预措施发展的意义。

相似文献

3
Regulation of immunity in bronchiectasis.
Med Mycol. 2009;47 Suppl 1:S175-82. doi: 10.1080/13693780802163370. Epub 2008 Jun 4.
4
Lack of association between KIR and HLA-C type and susceptibility to idiopathic bronchiectasis.
Respir Med. 2014 Aug;108(8):1127-33. doi: 10.1016/j.rmed.2014.05.017. Epub 2014 Jun 18.
5
HLA-C and killer cell immunoglobulin-like receptor genes in idiopathic bronchiectasis.
Am J Respir Crit Care Med. 2006 Feb 1;173(3):327-33. doi: 10.1164/rccm.200501-124OC. Epub 2005 Oct 27.
6
Natural killer-cell immunoglobulin-like receptors trigger differences in immune response to SARS-CoV-2 infection.
PLoS One. 2021 Aug 5;16(8):e0255608. doi: 10.1371/journal.pone.0255608. eCollection 2021.
8
Natural killer cells, killer immunoglobulin-like receptors and human leucocyte antigen class I in disease.
Clin Exp Immunol. 2007 Jul;149(1):1-8. doi: 10.1111/j.1365-2249.2007.03424.x. Epub 2007 May 22.
9
Bronchiectasis: Current Concepts in Pathogenesis, Immunology, and Microbiology.
Annu Rev Pathol. 2016 May 23;11:523-54. doi: 10.1146/annurev-pathol-012615-044344. Epub 2016 Mar 2.
10
Association of killer cell immunoglobulin-like receptor genes with primary Sjögren's syndrome among Chinese population.
Hum Immunol. 2025 Mar;86(2):111262. doi: 10.1016/j.humimm.2025.111262. Epub 2025 Feb 12.

引用本文的文献

2
The role of T-helper and T regulatory cells in driving neutrophilic and eosinophilic inflammation in bronchiectasis.
Front Immunol. 2025 Jun 16;16:1598257. doi: 10.3389/fimmu.2025.1598257. eCollection 2025.
3
Pulmonary Nontuberculous Mycobacteria Infection in Bronchiectasis: A Narrative Review of Current Status and Future.
Health Sci Rep. 2025 Apr 23;8(4):e70749. doi: 10.1002/hsr2.70749. eCollection 2025 Apr.
5
Delayed systemic arterial-pulmonary arterial shunt simulating pulmonary embolism: An unusual case.
Radiol Case Rep. 2024 Aug 27;19(11):5271-5275. doi: 10.1016/j.radcr.2024.07.177. eCollection 2024 Nov.
6
Lung microbiome: new insights into the pathogenesis of respiratory diseases.
Signal Transduct Target Ther. 2024 Jan 17;9(1):19. doi: 10.1038/s41392-023-01722-y.
7
Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease.
Front Immunol. 2023 Jan 17;13:1085551. doi: 10.3389/fimmu.2022.1085551. eCollection 2022.
8
Immunosenescence, Inflammaging, and Lung Senescence in Asthma in the Elderly.
Biomolecules. 2022 Oct 11;12(10):1456. doi: 10.3390/biom12101456.
10
The Interplay Between Respiratory Microbiota and Innate Immunity in Flavor E-Cigarette Vaping Induced Lung Dysfunction.
Front Microbiol. 2020 Dec 16;11:589501. doi: 10.3389/fmicb.2020.589501. eCollection 2020.

本文引用的文献

1
Structure, function and diversity of the healthy human microbiome.
Nature. 2012 Jun 13;486(7402):207-14. doi: 10.1038/nature11234.
2
The microbiome of the lung.
Transl Res. 2012 Oct;160(4):258-66. doi: 10.1016/j.trsl.2012.02.005. Epub 2012 Feb 28.
3
Decade-long bacterial community dynamics in cystic fibrosis airways.
Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5809-14. doi: 10.1073/pnas.1120577109. Epub 2012 Mar 26.
4
Microbial exposure during early life has persistent effects on natural killer T cell function.
Science. 2012 Apr 27;336(6080):489-93. doi: 10.1126/science.1219328. Epub 2012 Mar 22.
5
The lung tissue microbiome in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med. 2012 May 15;185(10):1073-80. doi: 10.1164/rccm.201111-2075OC. Epub 2012 Mar 15.
6
Significance of the microbiome in obstructive lung disease.
Thorax. 2012 May;67(5):456-63. doi: 10.1136/thoraxjnl-2011-201183. Epub 2012 Feb 8.
7
The microbiome in infectious disease and inflammation.
Annu Rev Immunol. 2012;30:759-95. doi: 10.1146/annurev-immunol-020711-074937. Epub 2012 Jan 6.
8
Bronchiectasis is associated with human T-lymphotropic virus 1 infection in an Indigenous Australian population.
Clin Infect Dis. 2012 Jan 1;54(1):43-50. doi: 10.1093/cid/cir766. Epub 2011 Nov 17.
9
Microbial genomics and infectious diseases.
N Engl J Med. 2011 Jul 28;365(4):347-57. doi: 10.1056/NEJMra1003071.
10
The Th17 pathway in cystic fibrosis lung disease.
Am J Respir Crit Care Med. 2011 Jul 15;184(2):252-8. doi: 10.1164/rccm.201102-0236OC. Epub 2011 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验