Wu Yuan, Jiang Xiaoqian, Ohno-Machado Lucila
Division of Biomedical Informatics, Department of Medicine University of California San Diego, La Jolla 92093, USA.
AMIA Annu Symp Proc. 2012;2012:1450-8. Epub 2012 Nov 3.
Privacy is becoming a major concern when sharing biomedical data across institutions. Although methods for protecting privacy of individual patients have been proposed, it is not clear how to protect the institutional privacy, which is many times a critical concern of data custodians. Built upon our previous work, Grid Binary LOgistic REgression (GLORE)1, we developed an Institutional Privacy-preserving Distributed binary Logistic Regression model (IPDLR) that considers both individual and institutional privacy for building a logistic regression model in a distributed manner. We tested our method using both simulated and clinical data, showing how it is possible to protect the privacy of individuals and of institutions using a distributed strategy.
在跨机构共享生物医学数据时,隐私正成为一个主要问题。尽管已经提出了保护个体患者隐私的方法,但尚不清楚如何保护机构隐私,而这往往是数据保管者的一个关键问题。基于我们之前的工作——网格二元逻辑回归(GLORE),我们开发了一种机构隐私保护分布式二元逻辑回归模型(IPDLR),该模型在以分布式方式构建逻辑回归模型时兼顾了个体和机构隐私。我们使用模拟数据和临床数据对我们的方法进行了测试,展示了如何通过分布式策略保护个人和机构的隐私。