Suppr超能文献

在分布式二元逻辑回归中保护机构隐私

Preserving Institutional Privacy in Distributed binary Logistic Regression.

作者信息

Wu Yuan, Jiang Xiaoqian, Ohno-Machado Lucila

机构信息

Division of Biomedical Informatics, Department of Medicine University of California San Diego, La Jolla 92093, USA.

出版信息

AMIA Annu Symp Proc. 2012;2012:1450-8. Epub 2012 Nov 3.

Abstract

Privacy is becoming a major concern when sharing biomedical data across institutions. Although methods for protecting privacy of individual patients have been proposed, it is not clear how to protect the institutional privacy, which is many times a critical concern of data custodians. Built upon our previous work, Grid Binary LOgistic REgression (GLORE)1, we developed an Institutional Privacy-preserving Distributed binary Logistic Regression model (IPDLR) that considers both individual and institutional privacy for building a logistic regression model in a distributed manner. We tested our method using both simulated and clinical data, showing how it is possible to protect the privacy of individuals and of institutions using a distributed strategy.

摘要

在跨机构共享生物医学数据时,隐私正成为一个主要问题。尽管已经提出了保护个体患者隐私的方法,但尚不清楚如何保护机构隐私,而这往往是数据保管者的一个关键问题。基于我们之前的工作——网格二元逻辑回归(GLORE),我们开发了一种机构隐私保护分布式二元逻辑回归模型(IPDLR),该模型在以分布式方式构建逻辑回归模型时兼顾了个体和机构隐私。我们使用模拟数据和临床数据对我们的方法进行了测试,展示了如何通过分布式策略保护个人和机构的隐私。

相似文献

1
Preserving Institutional Privacy in Distributed binary Logistic Regression.
AMIA Annu Symp Proc. 2012;2012:1450-8. Epub 2012 Nov 3.
2
Grid Binary LOgistic REgression (GLORE): building shared models without sharing data.
J Am Med Inform Assoc. 2012 Sep-Oct;19(5):758-64. doi: 10.1136/amiajnl-2012-000862. Epub 2012 Apr 17.
3
Secure Multi-pArty Computation Grid LOgistic REgression (SMAC-GLORE).
BMC Med Inform Decis Mak. 2016 Jul 25;16 Suppl 3(Suppl 3):89. doi: 10.1186/s12911-016-0316-1.
4
Privacy-preserving logistic regression with secret sharing.
BMC Med Inform Decis Mak. 2022 Apr 2;22(1):89. doi: 10.1186/s12911-022-01811-y.
5
Privacy-preserving model evaluation for logistic and linear regression using homomorphically encrypted genotype data.
J Biomed Inform. 2024 Aug;156:104678. doi: 10.1016/j.jbi.2024.104678. Epub 2024 Jun 25.
6
Privacy-Preserving in Healthcare Blockchain Systems Based on Lightweight Message Sharing.
Sensors (Basel). 2020 Mar 29;20(7):1898. doi: 10.3390/s20071898.
7
Privacy-protecting estimation of adjusted risk ratios using modified Poisson regression in multi-center studies.
BMC Med Res Methodol. 2019 Dec 5;19(1):228. doi: 10.1186/s12874-019-0878-6.
8
Calibrating predictive model estimates in a distributed network of patient data.
J Biomed Inform. 2021 May;117:103758. doi: 10.1016/j.jbi.2021.103758. Epub 2021 Apr 1.
9
A multicenter random forest model for effective prognosis prediction in collaborative clinical research network.
Artif Intell Med. 2020 Mar;103:101814. doi: 10.1016/j.artmed.2020.101814. Epub 2020 Feb 5.
10
Privacy-protecting multivariable-adjusted distributed regression analysis for multi-center pediatric study.
Pediatr Res. 2020 May;87(6):1086-1092. doi: 10.1038/s41390-019-0596-0. Epub 2019 Oct 2.

引用本文的文献

1
Privacy-preserving model learning on a blockchain network-of-networks.
J Am Med Inform Assoc. 2020 Mar 1;27(3):343-354. doi: 10.1093/jamia/ocz214.
2
Supporting Regularized Logistic Regression Privately and Efficiently.
PLoS One. 2016 Jun 6;11(6):e0156479. doi: 10.1371/journal.pone.0156479. eCollection 2016.
3
Development of a web service for analysis in a distributed network.
EGEMS (Wash DC). 2014 Dec 26;2(1):1053. doi: 10.13063/2327-9214.1053. eCollection 2014.
4
Differentially private distributed logistic regression using private and public data.
BMC Med Genomics. 2014;7 Suppl 1(Suppl 1):S14. doi: 10.1186/1755-8794-7-S1-S14. Epub 2014 May 8.
5
pSCANNER: patient-centered Scalable National Network for Effectiveness Research.
J Am Med Inform Assoc. 2014 Jul-Aug;21(4):621-6. doi: 10.1136/amiajnl-2014-002751. Epub 2014 Apr 29.
6
EXpectation Propagation LOgistic REgRession (EXPLORER): distributed privacy-preserving online model learning.
J Biomed Inform. 2013 Jun;46(3):480-96. doi: 10.1016/j.jbi.2013.03.008. Epub 2013 Apr 4.

本文引用的文献

1
Grid Binary LOgistic REgression (GLORE): building shared models without sharing data.
J Am Med Inform Assoc. 2012 Sep-Oct;19(5):758-64. doi: 10.1136/amiajnl-2012-000862. Epub 2012 Apr 17.
2
How comparative effectiveness research can help advance 'personalized medicine' in cancer treatment.
Health Aff (Millwood). 2011 Dec;30(12):2259-68. doi: 10.1377/hlthaff.2010.0637.
3
iDASH: integrating data for analysis, anonymization, and sharing.
J Am Med Inform Assoc. 2012 Mar-Apr;19(2):196-201. doi: 10.1136/amiajnl-2011-000538. Epub 2011 Nov 10.
4
Privacy-preserving models for comparing survival curves using the logrank test.
Comput Methods Programs Biomed. 2011 Nov;104(2):249-53. doi: 10.1016/j.cmpb.2011.04.004. Epub 2011 Jun 1.
5
Factors influencing alert acceptance: a novel approach for predicting the success of clinical decision support.
J Am Med Inform Assoc. 2011 Jul-Aug;18(4):479-84. doi: 10.1136/amiajnl-2010-000039. Epub 2011 May 12.
6
Accelerated clinical discovery using self-reported patient data collected online and a patient-matching algorithm.
Nat Biotechnol. 2011 May;29(5):411-4. doi: 10.1038/nbt.1837. Epub 2011 Apr 24.
7
A secure protocol for protecting the identity of providers when disclosing data for disease surveillance.
J Am Med Inform Assoc. 2011 May 1;18(3):212-7. doi: 10.1136/amiajnl-2011-000100.
8
Factors motivating and affecting health information exchange usage.
J Am Med Inform Assoc. 2011 Mar-Apr;18(2):143-9. doi: 10.1136/jamia.2010.004812. Epub 2011 Jan 24.
9
Privacy and health information technology.
J Law Med Ethics. 2009 Fall;37 Suppl 2:121-49. doi: 10.1111/j.1748-720X.2009.00424.x.
10
Modeling medical prognosis: survival analysis techniques.
J Biomed Inform. 2001 Dec;34(6):428-39. doi: 10.1006/jbin.2002.1038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验