Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada.
Cell Mol Life Sci. 2013 Nov;70(21):3989-4008. doi: 10.1007/s00018-012-1254-4. Epub 2013 Jan 11.
In eukaryotic cells, gene transcription is regulated by sequence-specific DNA-binding transcription factors that recognize promoter and enhancer elements near the transcriptional start site. Some coactivators promote transcription by connecting transcription factors to the basal transcriptional machinery. The highly conserved coactivators CREB-binding protein (CBP) and its paralog, E1A-binding protein (p300), each have four separate transactivation domains (TADs) that interact with the TADs of a number of DNA-binding transcription activators as well as general transcription factors (GTFs), thus mediating recruitment of basal transcription machinery to the promoter. Most promoters comprise multiple activator-binding sites, and many activators contain tandem TADs, thus multivalent interactions may stabilize CBP/p300 at the promoter, and intrinsically disordered regions in CBP/p300 and many activators may confer adaptability to these multivalent complexes. CBP/p300 contains a catalytic histone acetyltransferase (HAT) domain, which remodels chromatin to 'relax' its superstructure and enables transcription of proximal genes. The HAT activity of CBP/p300 also acetylates some transcription factors (e.g., p53), hence modulating the function of key transcriptional regulators. Through these numerous interactions, CBP/p300 has been implicated in complex physiological and pathological processes, and, in response to different signals, can drive cells towards proliferation or apoptosis. Dysregulation of the transcriptional and epigenetic functions of CBP/p300 is associated with leukemia and other types of cancer, thus it has been recognized as a potential anti-cancer drug target. In this review, we focus on recent exciting findings in the structural mechanisms of CBP/p300 involving multivalent and dynamic interactions with binding partners, which may pave new avenues for anti-cancer drug development.
在真核细胞中,基因转录受序列特异性 DNA 结合转录因子调控,这些转录因子识别转录起始位点附近的启动子和增强子元件。一些共激活因子通过将转录因子与基础转录机制连接起来促进转录。高度保守的共激活因子 CREB 结合蛋白 (CBP) 和其同源物 E1A 结合蛋白 (p300) 都有四个独立的转录激活结构域 (TAD),与许多 DNA 结合转录激活因子以及一般转录因子 (GTFs) 的 TAD 相互作用,从而介导基本转录机制向启动子的募集。大多数启动子包含多个激活剂结合位点,许多激活剂包含串联 TAD,因此多价相互作用可能稳定 CBP/p300 在启动子上,CBP/p300 和许多激活剂中的无规卷曲区域可能赋予它们对这些多价复合物的适应性。CBP/p300 含有催化组蛋白乙酰转移酶 (HAT) 结构域,该结构域重塑染色质以“放松”其超结构,从而使近端基因转录。CBP/p300 的 HAT 活性还乙酰化一些转录因子(例如 p53),从而调节关键转录调节剂的功能。通过这些众多相互作用,CBP/p300 被牵连到复杂的生理和病理过程中,并且,响应不同的信号,可以促使细胞增殖或凋亡。CBP/p300 的转录和表观遗传功能失调与白血病和其他类型的癌症有关,因此它已被认为是一种潜在的抗癌药物靶点。在这篇综述中,我们重点介绍了 CBP/p300 涉及与结合伙伴的多价和动态相互作用的结构机制方面的最新激动人心的发现,这可能为抗癌药物的开发开辟新的途径。