Bioengineering Science Research Group, School of Engineering Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
Med Eng Phys. 2013 Aug;35(8):1116-32. doi: 10.1016/j.medengphy.2012.11.011. Epub 2013 Jan 11.
The purpose of this paper is to explore both an extended and a reduced set of input parameters of the Finite Element (FE) model of the human lower limb with a Total Knee Replacement (TKR) implant. The most influential parameters in determining the size and the shape of the performance envelopes of eight kinematics and peak contact pressure output variables of the tibio-femoral joint and the patello-femoral joint are sought. The lower limb FE model, which includes bones, TKR implant, soft tissues and applied forces of realistic size, is used in the context of the stair ascent simulation. Two probabilistic methods are used together with the FE model to generate the performance envelopes and to explore the sensitivities of the input parameters of the FE model: the Monte Carlo simulation and the Response Surface Method (RSM). A total of four probabilistic FE analyses assess how the uncertainties in an extended set of 77 input variables and a reduced set of 22 input variables obtained from the RSM/sensitivity analyses affect the performance envelopes. It is shown that the FE model with the reduced set of variables is able to replicate the full FE model. The differences between the Monte Carlo envelopes of performance obtained with the FE model with the full set of variables and the FE model with the reduced set of variables were on average over all output measures under 1.67 mm for translations, 1.75° for rotations and under 2 MPa for peak contact pressures. The differences between the RSM and the Monte Carlo envelopes of performances obtained with the reduced set of input variables were, on average, over all output measures under 0.75 mm for translations, 1.26° for rotations and 2.39 MPa for peak contact pressures. While saving computational time with the reduced set of variables, the findings are especially of high importance to the orthopedic surgeons who would like to know the most important parameters that can influence the performance of the TKR for a given human activity.
本文旨在探索全膝关节置换(TKR)植入物的人体下肢有限元(FE)模型的扩展和简化输入参数。研究了确定八个运动学和峰值接触压力输出变量以及髌股关节的性能包络的大小和形状最有影响的参数。该下肢 FE 模型包括骨骼、TKR 植入物、软组织和实际大小的作用力,用于模拟楼梯上升。两种概率方法与 FE 模型一起用于生成性能包络并探索 FE 模型输入参数的敏感性:蒙特卡罗模拟和响应面法(RSM)。总共进行了四项概率 FE 分析,以评估扩展的 77 个输入变量和从 RSM/敏感性分析中获得的简化的 22 个输入变量的不确定性如何影响性能包络。结果表明,具有简化变量集的 FE 模型能够复制完整的 FE 模型。在所有输出测量中,使用完整变量集的 FE 模型和简化变量集的 FE 模型获得的性能蒙特卡罗包络之间的差异平均为 1.67mm 以下的平移、1.75°以下的旋转和 2MPa 以下的峰值接触压力。在所有输出测量中,使用简化输入变量集的 RSM 和蒙特卡罗性能包络之间的差异平均为 0.75mm 以下的平移、1.26°以下的旋转和 2.39MPa 以下的峰值接触压力。在使用简化变量集节省计算时间的同时,这些发现对希望了解影响特定人体活动中 TKR 性能的最重要参数的整形外科医生尤为重要。