Department of Medical Biochemistry and Molecular Biology, University of Oulu, Oulu, Finland.
Biol Chem. 2013 Apr;394(4):435-48. doi: 10.1515/hsz-2012-0328.
Hypoxia-inducible transcription factor (HIF), an αβ dimer, is the key inducer of hypoxia-responsive genes that operate both during normal development and pathological processes in association with decreased oxygen availability. The products of HIF target genes function in, e.g., hematopoiesis, angiogenesis, iron transport, glucose utilization, resistance to oxidative stress, cell proliferation, survival and apoptosis, extracellular matrix homeostasis, and tumorigenesis and metastasis. HIF is accumulated in hypoxia, whereas it is rapidly degraded in normoxic cells. The oxygen-sensing mechanism behind this phenomenon is provided by HIF prolyl 4-hydroxylases (HIF-P4Hs, commonly known as PHDs and EglNs) that require oxygen in their reaction. In normoxia, two prolines in the oxygen-dependent degradation domain of the HIFα subunit become hydroxylated by the HIF-P4Hs. The 4-hydroxyproline residues formed serve as recognition sites for the von Hippel-Lindau E3 ubiquitin ligase complex and result in subsequent ubiquitination and instant proteasomal degradation of HIFα in normoxia. The HIF-P4H reaction is inhibited in hypoxia. HIFα evades degradation and forms a functional dimer with HIFβ, leading to activation of the HIF target genes. The central role of HIF-P4Hs in the regulation of the hypoxia response pathway has provided an attractive possibility as a drug candidate for treatment of, e.g., severe anemias and ischemic conditions, and several companies are currently carrying out clinical studies on the use of HIF-P4H inhibitors to treat anemia in patients with a kidney disease. Therefore, it is important to understand the effects of individual HIF-P4H isoenzymes on the hypoxia response and potential other pathways in vivo. The common and specific functions of the HIF-P4H isoenzymes are discussed in this review on the basis of available data from cell biological studies and gene-modified animals.
缺氧诱导因子 (HIF) 是一种αβ二聚体,是缺氧反应基因的关键诱导因子,在正常发育和与氧供应减少相关的病理过程中发挥作用。HIF 靶基因的产物在造血、血管生成、铁转运、葡萄糖利用、氧化应激抵抗、细胞增殖、存活和凋亡、细胞外基质稳态以及肿瘤发生和转移等方面发挥作用。HIF 在缺氧时积累,而在常氧细胞中迅速降解。这种现象背后的氧感应机制是由 HIF 脯氨酰 4-羟化酶(HIF-P4Hs,通常称为 PHDs 和 EglNs)提供的,它们的反应需要氧气。在常氧条件下,HIFα 亚基的氧依赖性降解结构域中的两个脯氨酸被 HIF-P4Hs 羟化。形成的 4-羟脯氨酸残基作为 von Hippel-Lindau E3 泛素连接酶复合物的识别位点,并导致 HIFα 在常氧条件下随后发生泛素化和即刻蛋白酶体降解。HIF-P4H 反应在缺氧时受到抑制。HIFα 逃避降解并与 HIFβ 形成功能性二聚体,导致 HIF 靶基因的激活。HIF-P4Hs 在缺氧反应途径调节中的核心作用为治疗严重贫血和缺血等疾病提供了一个有吸引力的药物候选物的可能性,目前有几家公司正在进行使用 HIF-P4H 抑制剂治疗肾病患者贫血的临床研究。因此,了解单个 HIF-P4H 同工酶对体内缺氧反应和潜在其他途径的影响非常重要。本文根据细胞生物学研究和基因修饰动物的现有数据,讨论了 HIF-P4H 同工酶的共同和特异功能。