Department of Chemistry, Brandeis University, Waltham, MA 02454-9110, USA.
J Biomol NMR. 2013 Mar;55(3):257-65. doi: 10.1007/s10858-013-9707-0. Epub 2013 Jan 19.
Resonance assignment is the first step in NMR structure determination. For magic angle spinning NMR, this is typically achieved with a set of heteronuclear correlation experiments (NCaCX, NCOCX, CONCa) that utilize SPECIFIC-CP (15)N-(13)C transfers. However, the SPECIFIC-CP transfer efficiency is often compromised by molecular dynamics and probe performance. Here we show that one-bond ZF-TEDOR (15)N-(13)C transfers provide simultaneous NCO and NCa correlations with at least as much sensitivity as SPECIFIC-CP for some non-crystalline samples. Furthermore, a 3D ZF-TEDOR-CC experiment provides heteronuclear sidechain correlations and robustness with respect to proton decoupling and radiofrequency power instabilities. We demonstrate transfer efficiencies and connectivities by application of 3D ZF-TEDOR-DARR to a model microcrystalline protein, GB1, and a less ideal system, GvpA in intact gas vesicles.
共振分配是 NMR 结构测定的第一步。对于魔角旋转 NMR,这通常可以通过一组异核相关实验(NCaCX、NCOCX、CONCa)来实现,这些实验利用了特异性 CP(15)N-(13)C 转移。然而,特异性 CP 转移效率常常受到分子动力学和探头性能的影响。在这里,我们表明,单键 ZF-TEDOR(15)N-(13)C 转移为一些非晶样品提供了与特异性 CP 至少相同灵敏度的同时 NCO 和 NCa 相关,此外,3D ZF-TEDOR-CC 实验提供了异核侧链相关,并具有抗质子去耦和射频功率不稳定性的稳健性。我们通过将 3D ZF-TEDOR-DARR 应用于模型微晶体蛋白 GB1 和不太理想的系统完整气穴中的 GvpA,证明了转移效率和连接性。