Center for Structural Genomics of Infectious Diseases and Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
Protein Sci. 2013 Apr;22(4):418-24. doi: 10.1002/pro.2218. Epub 2013 Feb 11.
Dehydroquinate dehydratase (DHQD) catalyzes the third reaction in the biosynthetic shikimate pathway. Type I DHQDs are members of the greater aldolase superfamily, a group of enzymes that contain an active site lysine that forms a Schiff base intermediate. Three residues (Glu86, His143, and Lys170 in the Salmonella enterica DHQD) have previously been proposed to form a triad vital for catalysis. While the roles of Lys170 and His143 are well defined-Lys170 forms the Schiff base with the substrate and His143 shuttles protons in multiple steps in the reaction-the role of Glu86 remains poorly characterized. To probe Glu86's role, Glu86 mutants were generated and subjected to biochemical and structural study. The studies presented here demonstrate that mutant enzymes retain catalytic proficiency, calling into question the previously attributed role of Glu86 in catalysis and suggesting that His143 and Lys170 function as a catalytic dyad. Structures of the Glu86Ala (E86A) mutant in complex with covalently bound reaction intermediate reveal a conformational change of the His143 side chain. This indicates a predominant steric role for Glu86, to maintain the His143 side chain in position consistent with catalysis. The structures also explain why the E86A mutant is optimally active at more acidic conditions than the wild-type enzyme. In addition, a complex with the reaction product reveals a novel, likely nonproductive, binding mode that suggests a mechanism of competitive product inhibition and a potential strategy for the design of therapeutics.
脱水酶(DHQD)催化生物合成莽草酸途径中的第三个反应。I 型 DHQDs 是更大的醛缩酶超家族的成员,该酶家族包含一个活性位点赖氨酸,形成希夫碱中间产物。以前曾提出三个残基(沙门氏菌 DHQD 中的Glu86、His143 和 Lys170)形成三联体,对催化至关重要。虽然 Lys170 和 His143 的作用已经得到很好的定义 - Lys170 与底物形成希夫碱,His143 在反应的多个步骤中转移质子 - Glu86 的作用仍然知之甚少。为了探究 Glu86 的作用,生成了 Glu86 突变体并进行了生化和结构研究。本文介绍的研究表明,突变酶保留了催化效率,这对以前归因于 Glu86 在催化中的作用提出了质疑,并表明 His143 和 Lys170 作为催化二联体发挥作用。与共价结合的反应中间产物复合物的 Glu86Ala(E86A)突变体结构揭示了 His143 侧链的构象变化。这表明 Glu86 主要起空间位阻作用,使 His143 侧链保持与催化一致的位置。该结构还解释了为什么 E86A 突变体在比野生型酶更酸性的条件下最佳活性。此外,与反应产物的复合物揭示了一种新的、可能非生产性的结合模式,这表明了竞争性产物抑制的机制和治疗药物设计的潜在策略。