Department of Bioengineering, California Nano Systems Institute, University of California, Los Angeles, CA 90095, USA.
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2330-5. doi: 10.1073/pnas.1215089110. Epub 2013 Jan 22.
Myxococcus xanthus is a bacterium capable of complex social organization. Its characteristic social ("S")-motility mechanism is mediated by type IV pili (TFP), linear actuator appendages that propel the bacterium along a surface. TFP are known to bind to secreted exopolysaccharides (EPS), but it is unclear how M. xanthus manages to use the TFP-EPS technology common to many bacteria to achieve its unique coordinated multicellular movements. We examine M. xanthus S-motility, using high-resolution particle-tracking algorithms, and observe aperiodic stick-slip movements. We show that they are not due to chemotaxis, but are instead consistent with a constant TFP-generated force interacting with EPS, which functions both as a glue and as a lubricant. These movements are quantitatively homologous to the dynamics of earthquakes and other crackling noise systems. These systems exhibit critical behavior, which is characterized by a statistical hierarchy of discrete "avalanche" motions described by a power law distribution. The measured critical exponents from M. xanthus are consistent with mean field theoretical models and with other crackling noise systems, and the measured Lyapunov exponent suggests the existence of highly branched EPS. Such molecular architectures, which are common for efficient lubricants but rare in bacterial EPS, may be necessary for S-motility: We show that the TFP of leading "locomotive" cells initiate the collective motion of follower cells, indicating that lubricating EPS may alleviate the force generation requirements on the lead cell and thus make S-motility possible.
黄色粘球菌是一种能够进行复杂社会组织的细菌。它的特征性社会(“S”)运动机制是由 IV 型菌毛(TFP)介导的,TFP 是一种线性执行器附属物,可以推动细菌在表面上移动。TFP 已知与分泌的胞外多糖(EPS)结合,但尚不清楚黄色粘球菌如何利用许多细菌共有的 TFP-EPS 技术来实现其独特的协调多细胞运动。我们使用高分辨率粒子跟踪算法研究了黄色粘球菌的 S 运动,并观察到非周期性的粘滑运动。我们表明,这些运动不是由于趋化作用引起的,而是与由 TFP 产生的恒定力与 EPS 相互作用一致,EPS 既充当胶合剂又充当润滑剂。这些运动在数量上与地震和其他噼啪噪声系统的动力学同源。这些系统表现出临界行为,其特征是由幂律分布描述的离散“雪崩”运动的统计层次结构。从黄色粘球菌测量的临界指数与平均场理论模型和其他噼啪噪声系统一致,并且测量的李雅普诺夫指数表明存在高度分支的 EPS。这种分子结构对于有效的润滑剂很常见,但在细菌 EPS 中很少见,可能是 S 运动所必需的:我们表明,前导“运动”细胞的 TFP 启动了后续细胞的集体运动,这表明润滑 EPS 可能减轻了前导细胞的力产生要求,从而使 S 运动成为可能。