Wester Jason C, Contreras Diego
Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
J Comput Neurosci. 2013 Aug;35(1):1-17. doi: 10.1007/s10827-012-0436-2. Epub 2013 Jan 24.
Spike threshold filters incoming inputs and thus gates activity flow through neuronal networks. Threshold is variable, and in many types of neurons there is a relationship between the threshold voltage and the rate of rise of the membrane potential (dVm/dt) leading to the spike. In primary sensory cortex this relationship enhances the sensitivity of neurons to a particular stimulus feature. While Na⁺ channel inactivation may contribute to this relationship, recent evidence indicates that K⁺ currents located in the spike initiation zone are crucial. Here we used a simple Hodgkin-Huxley biophysical model to systematically investigate the role of K⁺ and Na⁺ current parameters (activation voltages and kinetics) in regulating spike threshold as a function of dVm/dt. Threshold was determined empirically and not estimated from the shape of the Vm prior to a spike. This allowed us to investigate intrinsic currents and values of gating variables at the precise voltage threshold. We found that Na⁺ nactivation is sufficient to produce the relationship provided it occurs at hyperpolarized voltages combined with slow kinetics. Alternatively, hyperpolarization of the K⁺ current activation voltage, even in the absence of Na⁺ inactivation, is also sufficient to produce the relationship. This hyperpolarized shift of K⁺ activation allows an outward current prior to spike initiation to antagonize the Na⁺ inward current such that it becomes self-sustaining at a more depolarized voltage. Our simulations demonstrate parameter constraints on Na⁺ inactivation and the biophysical mechanism by which an outward current regulates spike threshold as a function of dVm/dt.
峰值阈值对传入的输入进行筛选,从而控制通过神经网络的活动流。阈值是可变的,在许多类型的神经元中,阈值电压与导致峰值的膜电位上升速率(dVm/dt)之间存在一种关系。在初级感觉皮层中,这种关系增强了神经元对特定刺激特征的敏感性。虽然钠通道失活可能促成这种关系,但最近的证据表明,位于峰值起始区的钾电流至关重要。在这里,我们使用一个简单的霍奇金-赫胥黎生物物理模型,系统地研究钾电流和钠电流参数(激活电压和动力学)在调节作为dVm/dt函数的峰值阈值中的作用。阈值是根据经验确定的,而不是根据峰值之前Vm的形状估计的。这使我们能够研究在精确电压阈值下的内在电流和门控变量的值。我们发现,只要钠失活发生在超极化电压并伴有缓慢动力学,它就足以产生这种关系。或者,即使在没有钠失活的情况下,钾电流激活电压的超极化也足以产生这种关系。钾激活的这种超极化转变允许在峰值起始之前有一个外向电流来对抗钠内向电流,使得它在更高的去极化电压下变得自我维持。我们的模拟展示了对钠失活的参数限制以及外向电流作为dVm/dt函数调节峰值阈值的生物物理机制。