Suppr超能文献

超亲水-超疏水微图案的新兴应用。

Emerging applications of superhydrophilic-superhydrophobic micropatterns.

机构信息

Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany.

出版信息

Adv Mater. 2013 Mar 6;25(9):1234-47. doi: 10.1002/adma.201204120. Epub 2013 Jan 23.

Abstract

Water on superhydrophilic surfaces spreads or is absorbed very quickly, and exhibits water contact angles close to zero. We encounter superhydrophilic materials in our daily life (e.g., paper, sponges, textiles) and they are also ubiquitous in nature (e.g., plant and tree leaves, Nepenthes pitcher plant). On the other hand, water on completely non-wettable, superhydrophobic surfaces forms spherical droplets and rolls off the surface easily. One of the most well-known examples of a superhydrophobic surface is the lotus leaf. Creating novel superhydrophobic surfaces has led to exciting new properties such as complete water repellency, self-cleaning, separation of oil and water, and antibiofouling. However, combining these two extreme states of superhydrophilicity and superhydrophobicity on the same surface in precise two-dimensional micropatterns opens exciting new functionalities and possibilities in a wide variety of applications from cell, droplet, and hydrogel microarrays for screening to surface tension confined microchannels for separation and diagnostic devices. In this Progress Report, we briefly describe the methods for fabricating superhydrophilic-superhydrophobic patterns and highlight some of the newer and emerging applications of these patterned substrates that are currently being explored. We also give an outlook on current and future applications that would benefit from using such superhydrophilic-superhydrophobic micropatterns.

摘要

超亲水表面上的水会迅速扩散或被吸收,并且表现出接近零的水接触角。在日常生活中我们会遇到超亲水材料(例如纸张、海绵、纺织品),在自然界中它们也无处不在(例如植物和树叶、猪笼草)。另一方面,完全不可润湿的超疏水表面上的水会形成球形液滴,并且很容易从表面滚落。超疏水表面最著名的例子之一是荷叶。创造新型超疏水表面导致了一些令人兴奋的新特性,例如完全防水、自清洁、油水分离和防生物污染。然而,在同一表面上精确地二维微图案中结合这两种极端的超亲水性和超疏水性状态,为从筛选用细胞、液滴和水凝胶微阵列到用于分离和诊断设备的表面张力限制微通道的各种应用开辟了令人兴奋的新功能和可能性。在本进展报告中,我们简要描述了制造超亲水-超疏水图案的方法,并重点介绍了目前正在探索的这些图案化基底的一些较新的和新兴的应用。我们还展望了当前和未来可能受益于使用这种超亲水-超疏水微图案的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验