Suppr超能文献

用于离体锰增强 MRI 的活体锰增强的小鼠脑固定。

Mouse brain fixation to preserve In vivo manganese enhancement for ex vivo manganese-enhanced MRI.

机构信息

Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.

出版信息

J Magn Reson Imaging. 2013 Aug;38(2):482-7. doi: 10.1002/jmri.24005. Epub 2013 Jan 24.

Abstract

PURPOSE

To develop a tissue fixation method that preserves in vivo manganese enhancement for ex vivo magnetic resonance imaging (MRI). The needs are clear, as conventional in vivo manganese-enhanced MRI (MEMRI) applied to live animals is time-limited, hence limited in spatial resolution and signal-to-noise ratio (SNR). Ex vivo applications can achieve superior spatial resolution and SNR through increased signal averaging and optimized radiofrequency coil designs. A tissue fixation method that preserves in vivo Mn(2+) enhancement postmortem is necessary for ex vivo MEMRI.

MATERIALS AND METHODS

T1 measurements and T1 -weighted MRI were performed on MnCl2 -administered mice. The mice were then euthanized and the brains were fixed using one of two brain tissue fixation methods: aldehyde solution or focused beam microwave irradiation (FBMI). MRI was then performed on the fixed brains.

RESULTS

T1 values and T1 -weighted signal contrasts were comparable between in vivo and ex vivo scans on aldehyde-fixed brains. FBMI resulted in the loss of Mn(2+) enhancement.

CONCLUSION

Aldehyde fixation, not FBMI, maintained in vivo manganese enhancement for ex vivo MEMRI.

摘要

目的

开发一种组织固定方法,以保留活体锰增强用于离体磁共振成像(MRI)。需求是明确的,因为应用于活体动物的传统活体锰增强 MRI(MEMRI)是限时的,因此空间分辨率和信噪比(SNR)有限。离体应用可以通过增加信号平均和优化射频线圈设计来实现更高的空间分辨率和 SNR。对于离体 MEMRI,需要一种在死后保留体内 Mn(2+)增强的组织固定方法。

材料和方法

对 MnCl2 给药的小鼠进行 T1 测量和 T1 加权 MRI。然后将小鼠安乐死,并使用两种脑组织固定方法之一固定大脑:醛溶液或聚焦束微波照射(FBMI)。然后对固定的大脑进行 MRI 检查。

结果

在醛固定的大脑中,体内和离体扫描的 T1 值和 T1 加权信号对比度相当。FBMI 导致 Mn(2+)增强的丧失。

结论

醛固定,而不是 FBMI,维持了离体 MEMRI 中的体内锰增强。

相似文献

1
Mouse brain fixation to preserve In vivo manganese enhancement for ex vivo manganese-enhanced MRI.
J Magn Reson Imaging. 2013 Aug;38(2):482-7. doi: 10.1002/jmri.24005. Epub 2013 Jan 24.
2
Isotropic 25-Micron 3D Neuroimaging Using Microstructural Manganese-Enhanced MRI (MEMRI).
Front Neural Circuits. 2018 Dec 6;12:110. doi: 10.3389/fncir.2018.00110. eCollection 2018.
3
Manganese-enhanced magnetic resonance imaging (MEMRI) of mouse brain development.
NMR Biomed. 2004 Dec;17(8):613-9. doi: 10.1002/nbm.932.
5
Mn dynamics in manganese-enhanced MRI (MEMRI): Ca1.2 channel-mediated uptake and preferential accumulation in projection terminals.
Neuroimage. 2018 Apr 1;169:374-382. doi: 10.1016/j.neuroimage.2017.12.054. Epub 2017 Dec 19.
7
Potential of N-acetylated-para-aminosalicylic acid to accelerate manganese enhancement decline for long-term MEMRI in rodent brain.
J Neurosci Methods. 2015 Aug 15;251:92-8. doi: 10.1016/j.jneumeth.2015.05.013. Epub 2015 May 22.
8
Functional mapping of rat barrel activation following whisker stimulation using activity-induced manganese-dependent contrast.
Neuroimage. 2007 Jul 15;36(4):1179-88. doi: 10.1016/j.neuroimage.2007.04.010. Epub 2007 Apr 18.
10
T mapping of the mouse brain following fractionated manganese administration using MP2RAGE.
Brain Struct Funct. 2017 Jan;222(1):201-214. doi: 10.1007/s00429-016-1211-3. Epub 2016 Mar 21.

引用本文的文献

1
Auditory synaptopathy in mice lacking the glutamate transporter GLAST and its impact on brain activity.
Prog Brain Res. 2021;262:245-261. doi: 10.1016/bs.pbr.2020.04.004. Epub 2020 May 29.
2
Comparison of in vivo and in situ detection of hippocampal metabolites in mouse brain using H-MRS.
NMR Biomed. 2021 Feb;34(2):e4451. doi: 10.1002/nbm.4451. Epub 2020 Nov 30.
3
Isotropic 25-Micron 3D Neuroimaging Using Microstructural Manganese-Enhanced MRI (MEMRI).
Front Neural Circuits. 2018 Dec 6;12:110. doi: 10.3389/fncir.2018.00110. eCollection 2018.
4
Comparison of and MRI for the Detection of Structural Abnormalities in a Mouse Model of Tauopathy.
Front Neuroinform. 2017 Mar 31;11:20. doi: 10.3389/fninf.2017.00020. eCollection 2017.
5
Mapping of pain circuitry in early post-natal development using manganese-enhanced MRI in rats.
Neuroscience. 2017 Jun 3;352:180-189. doi: 10.1016/j.neuroscience.2017.03.052. Epub 2017 Apr 6.

本文引用的文献

1
Manipulation of tissue contrast using contrast agents for enhanced MR microscopy in ex vivo mouse brain.
Neuroimage. 2009 Jul 1;46(3):589-99. doi: 10.1016/j.neuroimage.2009.02.027. Epub 2009 Mar 2.
2
In situ 3D magnetic resonance metabolic imaging of microwave-irradiated rodent brain: a new tool for metabolomics research.
J Neurochem. 2009 Apr;109(2):494-501. doi: 10.1111/j.1471-4159.2009.05967.x. Epub 2009 Feb 7.
4
Manganese taken up into the CNS via the olfactory pathway in rats affects astrocytes.
Toxicol Sci. 2000 Jun;55(2):392-8. doi: 10.1093/toxsci/55.2.392.
6
A new cytochemical method for the ultrastructural localization of calcium in the central nervous system.
J Neurosci Methods. 1994 Sep;54(1):83-93. doi: 10.1016/0165-0270(94)90162-7.
7
Microwave fixation and localization of calcium in synaptic vesicles.
J Neurosci Methods. 1994 Dec;55(2):125-36. doi: 10.1016/0165-0270(94)90205-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验