Suppr超能文献

形式追随功能:用于主动脉心脏瓣膜组织工程的三层结构复制进展

Form Follows Function: Advances in Trilayered Structure Replication for Aortic Heart Valve Tissue Engineering.

作者信息

Simionescu Dan T, Chen Joseph, Jaeggli Michael, Wang Bo, Liao Jun

机构信息

Biocompatibility and Tissue Regeneration Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634.

出版信息

J Healthc Eng. 2012 Jun;3(2):179-202. doi: 10.1260/2040-2295.3.2.179.

Abstract

Tissue engineering the aortic heart valve is a challenging endeavor because of the particular hemodynamic and biologic conditions present in the native aortic heart valve. The backbone of an ideal valve substitute should be a scaffold that is strong enough to withstand billions of repetitive bending, flexing and stretching cycles, while also being slowly degradable to allow for remodeling. In this review we highlight three overlooked aspects that might influence the long term durability of tissue engineered valves: replication of the native valve trilayered histoarchitecture, duplication of the three-dimensional shape of the valve and cell integration efforts focused on getting the right number and type of cells to the right place within the valve structure and driving them towards homeostatic maintenance of the valve matrix. We propose that the trilayered structure in the native aortic valve that includes a middle spongiosa layer cushioning the motions of the two external fibrous layers should be our template for creation of novel scaffolds with improved mechanical durability. Furthermore, since cells adapt to micro-loads within the valve structure, we believe that interstitial cell remodeling of the valvular matrix will depend on the accurate replication of the structures and loads, resulting in successful regeneration of the valve tissue and extended durability.

摘要

由于天然主动脉心脏瓣膜存在特殊的血流动力学和生物学条件,组织工程化主动脉心脏瓣膜是一项具有挑战性的工作。理想瓣膜替代品的核心应该是一种支架,它要足够坚固,能够承受数十亿次反复的弯曲、挠曲和拉伸循环,同时还要能够缓慢降解以允许重塑。在这篇综述中,我们强调了三个可能影响组织工程瓣膜长期耐久性的被忽视的方面:天然瓣膜三层组织结构的复制、瓣膜三维形状的复制以及细胞整合工作,即致力于将正确数量和类型的细胞输送到瓣膜结构内的正确位置,并促使它们维持瓣膜基质的稳态。我们提出,天然主动脉瓣膜中的三层结构,包括中间的海绵层缓冲两个外部纤维层的运动,应该成为我们创建具有更高机械耐久性的新型支架的模板。此外,由于细胞会适应瓣膜结构内的微负荷,我们认为瓣膜基质的间质细胞重塑将取决于结构和负荷的精确复制,从而成功实现瓣膜组织的再生并延长耐久性。

相似文献

2
Trilayered tissue construct mimicking the orientations of three layers of a native heart valve leaflet.
Cell Tissue Res. 2020 Nov;382(2):321-335. doi: 10.1007/s00441-020-03241-6. Epub 2020 Jul 16.
3
Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
Acta Biomater. 2017 Mar 15;51:89-100. doi: 10.1016/j.actbio.2017.01.051. Epub 2017 Jan 18.
4
Leaflet Tissue Generation from Microfibrous Heart Valve Leaflet Scaffolds with Native Characteristics.
ACS Appl Bio Mater. 2021 Nov 15;4(11):7836-7847. doi: 10.1021/acsabm.1c00768. Epub 2021 Nov 3.
6
Behavior of valvular interstitial cells on trilayered nanofibrous substrate mimicking morphologies of heart valve leaflet.
Acta Biomater. 2019 Feb;85:142-156. doi: 10.1016/j.actbio.2018.12.005. Epub 2018 Dec 5.
7
Fibrous heart valve leaflet substrate with native-mimicked morphology.
Appl Mater Today. 2021 Sep;24. doi: 10.1016/j.apmt.2021.101112. Epub 2021 Jul 23.
8
9
6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep.
Biomaterials. 2015 Dec;73:175-84. doi: 10.1016/j.biomaterials.2015.09.016. Epub 2015 Sep 11.
10
Challenges in developing a reseeded, tissue-engineered aortic valve prosthesis.
Eur J Cardiothorac Surg. 2016 Sep;50(3):446-55. doi: 10.1093/ejcts/ezw057. Epub 2016 Apr 15.

引用本文的文献

1
Learning-enhanced 3D fiber orientation mapping in thick cardiac tissues.
Biomed Opt Express. 2025 Jul 22;16(8):3315-3336. doi: 10.1364/BOE.563643. eCollection 2025 Aug 1.
4
Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds.
Prog Mater Sci. 2023 Oct;139. doi: 10.1016/j.pmatsci.2023.101173. Epub 2023 Jul 26.
5
Aortic valve disease in diabetes: Molecular mechanisms and novel therapies.
J Cell Mol Med. 2021 Oct;25(20):9483-9495. doi: 10.1111/jcmm.16937. Epub 2021 Sep 24.
6
Fibrous heart valve leaflet substrate with native-mimicked morphology.
Appl Mater Today. 2021 Sep;24. doi: 10.1016/j.apmt.2021.101112. Epub 2021 Jul 23.
7
tissue engineering of a trilayered leaflet-shaped tissue construct.
Regen Med. 2020 Jan;15(1):1177-1192. doi: 10.2217/rme-2019-0078. Epub 2020 Feb 26.
9
In Vivo Testing of Xenogeneic Acellular Aortic Valves Seeded with Stem Cells.
Rev Rom Med Lab. 2016 Sep;24(3):343-346. doi: 10.1515/rrlm-2016-0031. Epub 2016 Oct 15.
10
Bioreactor Conditioning of Valve Scaffolds Seeded Internally with Adult Stem Cells.
Tissue Eng Regen Med. 2016 Oct;13(5):507-515. doi: 10.1007/s13770-016-9114-1. Epub 2016 Oct 20.

本文引用的文献

2
Heart valve tissue engineering: quo vadis?
Curr Opin Biotechnol. 2011 Oct;22(5):698-705. doi: 10.1016/j.copbio.2011.01.004. Epub 2011 Feb 10.
3
Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation.
Biomech Model Mechanobiol. 2011 Dec;10(6):939-53. doi: 10.1007/s10237-010-0285-8. Epub 2011 Jan 21.
5
The early and midterm function of decellularized aortic valve allografts.
Ann Thorac Surg. 2010 Dec;90(6):1854-60. doi: 10.1016/j.athoracsur.2010.08.022.
7
Assembly and testing of stem cell-seeded layered collagen constructs for heart valve tissue engineering.
Tissue Eng Part A. 2011 Jan;17(1-2):25-36. doi: 10.1089/ten.TEA.2010.0138. Epub 2010 Sep 6.
8
Vacuum-assisted cell seeding in a microwell cell culture system.
Anal Chem. 2010 Mar 15;82(6):2380-6. doi: 10.1021/ac902596b.
9
Executive summary: heart disease and stroke statistics--2010 update: a report from the American Heart Association.
Circulation. 2010 Feb 23;121(7):948-54. doi: 10.1161/CIRCULATIONAHA.109.192666.
10
Tissue-engineered heart valves.
Physiol Res. 2009;58 Suppl 2:S141-S158. doi: 10.33549/physiolres.931919.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验