Suppr超能文献

内在无序在蛋白质中扮演着多种多样的角色,这说明了它对植物生物学的广泛影响。

Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology.

机构信息

The New Zealand Institute for Plant and Food Research, Palmerston North 4474, New Zealand.

出版信息

Plant Cell. 2013 Jan;25(1):38-55. doi: 10.1105/tpc.112.106062. Epub 2013 Jan 29.

Abstract

Intrinsically disordered proteins (IDPs) are highly abundant in eukaryotic proteomes. Plant IDPs play critical roles in plant biology and often act as integrators of signals from multiple plant regulatory and environmental inputs. Binding promiscuity and plasticity allow IDPs to interact with multiple partners in protein interaction networks and provide important functional advantages in molecular recognition through transient protein-protein interactions. Short interaction-prone segments within IDPs, termed molecular recognition features, represent potential binding sites that can undergo disorder-to-order transition upon binding to their partners. In this review, we summarize the evidence for the importance of IDPs in plant biology and evaluate the functions associated with intrinsic disorder in five different types of plant protein families experimentally confirmed as IDPs. Functional studies of these proteins illustrate the broad impact of disorder on many areas of plant biology, including abiotic stress, transcriptional regulation, light perception, and development. Based on the roles of disorder in the protein-protein interactions, we propose various modes of action for plant IDPs that may provide insight for future experimental approaches aimed at understanding the molecular basis of protein function within important plant pathways.

摘要

无序蛋白(IDPs)在真核生物蛋白质组中含量丰富。植物 IDPs 在植物生物学中起着关键作用,通常作为来自多个植物调节和环境输入的信号的整合者。结合的随意性和可塑性允许 IDPs 在蛋白质相互作用网络中与多个伙伴相互作用,并通过瞬时蛋白质-蛋白质相互作用提供重要的功能优势。在 IDPs 内的短相互作用倾向片段,称为分子识别特征,代表潜在的结合位点,这些结合位点在与它们的伴侣结合时可以经历无序到有序的转变。在这篇综述中,我们总结了 IDPs 在植物生物学中的重要性的证据,并评估了在五个不同类型的实验证实为 IDPs 的植物蛋白家族中与内在无序相关的功能。这些蛋白质的功能研究说明了无序对植物生物学许多领域的广泛影响,包括非生物胁迫、转录调节、光感知和发育。基于无序在蛋白质-蛋白质相互作用中的作用,我们提出了植物 IDPs 的各种作用模式,这些模式可能为未来旨在理解重要植物途径中蛋白质功能的分子基础的实验方法提供了见解。

相似文献

1
Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology.
Plant Cell. 2013 Jan;25(1):38-55. doi: 10.1105/tpc.112.106062. Epub 2013 Jan 29.
4
Genome-wide analysis of protein disorder in Arabidopsis thaliana: implications for plant environmental adaptation.
PLoS One. 2013;8(2):e55524. doi: 10.1371/journal.pone.0055524. Epub 2013 Feb 7.
5
Limitations of induced folding in molecular recognition by intrinsically disordered proteins.
Chemphyschem. 2009 Jul 13;10(9-10):1415-9. doi: 10.1002/cphc.200900205.
6
Structural disorder in plant proteins: where plasticity meets sessility.
Cell Mol Life Sci. 2017 Sep;74(17):3119-3147. doi: 10.1007/s00018-017-2557-2. Epub 2017 Jun 22.
7
Unfoldomics of human diseases: linking protein intrinsic disorder with diseases.
BMC Genomics. 2009 Jul 7;10 Suppl 1(Suppl 1):S7. doi: 10.1186/1471-2164-10-S1-S7.
8
Intrinsically Disordered Proteins as Important Players during Desiccation Stress of Soybean Radicles.
J Proteome Res. 2017 Jul 7;16(7):2393-2409. doi: 10.1021/acs.jproteome.6b01045. Epub 2017 May 30.
9
The functional diversity of structural disorder in plant proteins.
Arch Biochem Biophys. 2020 Feb 15;680:108229. doi: 10.1016/j.abb.2019.108229. Epub 2019 Dec 20.
10
Structural and Functional Dynamics of Dehydrins: A Plant Protector Protein under Abiotic Stress.
Int J Mol Sci. 2018 Oct 31;19(11):3420. doi: 10.3390/ijms19113420.

引用本文的文献

2
The transcription factor ClWRKY61 interacts with ClLEA55 to enhance salt tolerance in watermelon.
Hortic Res. 2024 Nov 11;12(3):uhae320. doi: 10.1093/hr/uhae320. eCollection 2025 Mar.
3
The Gene Enhances the Cold Resistance of .
Plants (Basel). 2025 Jan 10;14(2):180. doi: 10.3390/plants14020180.
5
Intrinsic Disorder and Other Malleable Arsenals of Evolved Protein Multifunctionality.
J Mol Evol. 2024 Dec;92(6):669-684. doi: 10.1007/s00239-024-10196-7. Epub 2024 Aug 30.
7
Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma.
Biophys Rev (Melville). 2022 Mar 17;3(1):011306. doi: 10.1063/5.0080512. eCollection 2022 Mar.
9
Genome-Wide Identification, Characterization, and Expression Analysis of the Gene Family in .
Genes (Basel). 2023 Jul 8;14(7):1416. doi: 10.3390/genes14071416.
10
The Moonlighting Function of Soybean Disordered Methyl-CpG-Binding Domain 10c Protein.
Int J Mol Sci. 2023 May 12;24(10):8677. doi: 10.3390/ijms24108677.

本文引用的文献

1
Predicting and analyzing protein phosphorylation sites in plants using musite.
Front Plant Sci. 2012 Aug 21;3:186. doi: 10.3389/fpls.2012.00186. eCollection 2012.
4
Phosphorylation of intrinsically disordered regions in remorin proteins.
Front Plant Sci. 2012 May 7;3:86. doi: 10.3389/fpls.2012.00086. eCollection 2012.
7
N-terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins.
J Mol Biol. 2012 Feb 17;416(2):287-99. doi: 10.1016/j.jmb.2011.12.043. Epub 2011 Dec 28.
8
Structure of full-length Drosophila cryptochrome.
Nature. 2011 Nov 13;480(7377):396-9. doi: 10.1038/nature10618.
10
Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome.
J Mol Biol. 2011 Oct 14;413(1):128-37. doi: 10.1016/j.jmb.2011.08.031. Epub 2011 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验