Suppr超能文献

从人类患者的微电极皮层电图中解码手部轨迹

Decoding hand trajectories from micro-electrocorticography in human patients.

作者信息

Kellis Spencer, Hanrahan Sara, Davis Tyler, House Paul A, Brown Richard, Greger Bradley

机构信息

Division of Biology, California Institute of Biology, Pasadena, CA 91125, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4091-4. doi: 10.1109/EMBC.2012.6346866.

Abstract

A Kalman filter was used to decode hand trajectories from micro-electrocorticography recorded over motor cortex in human patients. In two cases, signals were recorded during stereotyped tasks, and the trajectories were decoded offline, with maximum correlation coefficients between actual and predicted trajectories of 0.51 (x-direction position) and 0.54 (y-direction position). In a third setting, a human patient with full neural control of a computer cursor acquired onscreen targets within 6.24 sec on average, with no algorithmic constraints on the output trajectory. These practical results illustrate the potential utility of signals recorded at the cortical surface with high spatial resolution, demonstrating that surface potentials contain relevant and sufficient information to drive sophisticated brain-computer interface systems.

摘要

卡尔曼滤波器被用于从人类患者运动皮层记录的微电极皮质电图中解码手部轨迹。在两个案例中,在定型任务期间记录信号,并对轨迹进行离线解码,实际轨迹与预测轨迹之间的最大相关系数在x方向位置为0.51,在y方向位置为0.54。在第三种情况下,一名对计算机光标具有完全神经控制能力的人类患者平均在6.24秒内获取屏幕上的目标,对输出轨迹没有算法限制。这些实际结果说明了以高空间分辨率在皮质表面记录的信号的潜在效用,表明表面电位包含驱动复杂脑机接口系统的相关且充分的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验