Pohlmeyer Eric A, Mahmoudi Babak, Geng Shijia, Prins Noeline, Sanchez Justin C
Department of Biomedical Engineering, Miami University, Coral Gables, Fl 33146, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4108-11. doi: 10.1109/EMBC.2012.6346870.
Here we demonstrate how a marmoset monkey can use a reinforcement learning (RL) Brain-Machine Interface (BMI) to effectively control the movements of a robot arm for a reaching task. In this work, an actor-critic RL algorithm used neural ensemble activity in the monkey's motor cortext to control the robot movements during a two-target decision task. This novel approach to decoding offers unique advantages for BMI control applications. Compared to supervised learning decoding methods, the actor-critic RL algorithm does not require an explicit set of training data to create a static control model, but rather it incrementally adapts the model parameters according to its current performance, in this case requiring only a very basic feedback signal. We show how this algorithm achieved high performance when mapping the monkey's neural states (94%) to robot actions, and only needed to experience a few trials before obtaining accurate real-time control of the robot arm. Since RL methods responsively adapt and adjust their parameters, they can provide a method to create BMIs that are robust against perturbations caused by changes in either the neural input space or the output actions they generate under different task requirements or goals.
在此,我们展示了一只狨猴如何使用强化学习(RL)脑机接口(BMI)来有效控制机器人手臂在伸手抓取任务中的运动。在这项工作中,一种演员-评论家RL算法利用猴子运动皮层中的神经集群活动,在双目标决策任务期间控制机器人的运动。这种新颖的解码方法为BMI控制应用提供了独特的优势。与监督学习解码方法相比,演员-评论家RL算法不需要一组明确的训练数据来创建静态控制模型,而是根据其当前性能逐步调整模型参数,在这种情况下仅需要一个非常基本的反馈信号。我们展示了该算法在将猴子的神经状态(94%)映射到机器人动作时如何实现高性能,并且在获得机器人手臂的精确实时控制之前只需要进行几次试验。由于RL方法能够响应式地适应和调整其参数,它们可以提供一种创建对神经输入空间变化或在不同任务要求或目标下产生的输出动作变化所引起的扰动具有鲁棒性的BMI的方法。