Suppr超能文献

在一项使用表面肌电信号(SEMG)进行手部运动识别的研究中对多类支持向量机(SVM)判别能力的评估。

The evaluation of the discriminant ability of multiclass SVM in a study of hand motion recognition by using SEMG.

作者信息

Futamata Masachika, Nagata Kentaro, Magatani Kazushige

机构信息

School of Engineering, Course of Electrical and Electronic System, Tokai University, Japan.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5246-9. doi: 10.1109/EMBC.2012.6347177.

Abstract

Electromyogram (EMG) is a kind of biological signal that is generated because of excitement of muscle according to the motor instruction from a brain. We have been experimentally developing the hand motion recognition system by using 4 channels forearm EMG signals. In our system, in order to classify measured EMG SVM (Support Vector Machine) that has higher discriminability is used. Often SVM is used as a non-linear classifier. But, In the conventional system that we developed, we used a canonical discriminant analysis (CDA) method. CDA method is linear discriminant function, but it has shown good experimental results. Therefore, we have compared the discriminant ability between SVM and CDA. In this report, we will describe about the results of this experiment.

摘要

肌电图(EMG)是一种生物信号,它是根据大脑发出的运动指令,由肌肉兴奋产生的。我们一直在通过使用4通道前臂肌电信号进行手部运动识别系统的实验开发。在我们的系统中,为了对测量的肌电信号进行分类,使用了具有更高辨别能力的支持向量机(SVM)。通常,支持向量机被用作非线性分类器。但是,在我们开发的传统系统中,我们使用了典型判别分析(CDA)方法。CDA方法是线性判别函数,但它已经显示出良好的实验结果。因此,我们比较了支持向量机和典型判别分析之间的判别能力。在本报告中,我们将描述该实验的结果。

相似文献

1
The evaluation of the discriminant ability of multiclass SVM in a study of hand motion recognition by using SEMG.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5246-9. doi: 10.1109/EMBC.2012.6347177.
2
Monte Carlo method for evaluating the effect of surface EMG measurement placement on motion recognition accuracy.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2583-6. doi: 10.1109/IEMBS.2009.5335340.
4
5
Hand motion estimation by EMG signals using linear multiple regression models.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1339-42. doi: 10.1109/IEMBS.2006.259329.
6
A machine learning based method for classification of fractal features of forearm sEMG using Twin Support vector machines.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4821-4. doi: 10.1109/IEMBS.2010.5627902.
7
Identification of isometric contractions based on High Density EMG maps.
J Electromyogr Kinesiol. 2013 Feb;23(1):33-42. doi: 10.1016/j.jelekin.2012.06.009. Epub 2012 Jul 20.
8
NLR, MLP, SVM, and LDA: a comparative analysis on EMG data from people with trans-radial amputation.
J Neuroeng Rehabil. 2017 Aug 14;14(1):82. doi: 10.1186/s12984-017-0290-6.
9
Ranking hand movements for myoelectric pattern recognition considering forearm muscle structure.
Med Biol Eng Comput. 2017 Aug;55(8):1507-1518. doi: 10.1007/s11517-016-1608-4. Epub 2017 Jan 4.
10
On the challenge of classifying 52 hand movements from surface electromyography.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4931-7. doi: 10.1109/EMBC.2012.6347099.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验