Suppr超能文献

牛眼玻璃体的纳米粒子扩散及其微观流变学性质的离体研究。

Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo.

机构信息

Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA.

出版信息

J Control Release. 2013 Apr 10;167(1):76-84. doi: 10.1016/j.jconrel.2013.01.018. Epub 2013 Jan 28.

Abstract

Intravitreal injection of biodegradable nanoparticles (NP) holds promise for gene therapy and drug delivery to the back of the eye. In some cases, including gene therapy, NP need to diffuse rapidly from the site of injection in order to reach targeted cell types in the back of the eye, whereas in other cases it may be preferred for the particles to remain at the injection site and slowly release drugs that may then diffuse to the site of action. We studied the movements of polystyrene (PS) NP of various sizes and surface chemistries in fresh bovine vitreous. PS NP as large as 510nm rapidly penetrated the vitreous gel when coated with polyethylene glycol (PEG), whereas the movements of NP 1190nm in diameter or larger were highly restricted regardless of surface chemistry owing to steric obstruction. PS NP coated with primary amine groups (NH2) possessed positively charged surfaces at the pH of bovine vitreous (pH=7.2), and were immobilized within the vitreous gel. In comparison, PS NP coated with COOH (possessing negatively charged surfaces) in the size range of 100-200nm and at particle concentrations below 0.0025% (w/v) readily diffused through the vitreous meshwork; at higher concentrations (~0.1% w/v), these nanoparticles aggregated within vitreous. Based on the mobility of different sized PEGylated PS NP (PS-PEG), we estimated the average mesh size of fresh bovine vitreous to be ~550±50nm. The bovine vitreous behaved as an impermeable elastic barrier to objects sized 1190nm and larger, but as a highly permeable viscoelastic liquid to non-adhesive objects smaller than 510nm in diameter. Guided by these studies, we next sought to examine the transport of drug- and DNA-loaded nanoparticles in bovine vitreous. Biodegradable NP with a diameter of 227nm, composed of a poly(lactic-co-glycolic acid) (PLGA)-based core coated with poly(vinyl alcohol) rapidly penetrated vitreous. Rod-shaped, highly-compacted CK30PEG10k/DNA with PEG coating (neutral surface charge; hydrodynamic diameter ~60nm) also diffused rapidly within vitreous. These findings will help guide the development of nanoparticle-based therapeutics for the treatment of vision-threatening ocular diseases.

摘要

玻璃体腔内注射生物可降解纳米颗粒(NP)有望实现眼部后部的基因治疗和药物输送。在某些情况下,包括基因治疗,NP 需要从注射部位迅速扩散,以便到达眼部后部的靶向细胞类型,而在其他情况下,NP 留在注射部位并缓慢释放药物,然后药物扩散到作用部位可能更为理想。我们研究了不同大小和表面化学性质的聚苯乙烯(PS)NP 在新鲜牛玻璃体中的运动。当用聚乙二醇(PEG)涂覆时,最大直径为 510nm 的 PS NP 迅速穿透玻璃体凝胶,而直径为 1190nm 或更大的 NP 的运动则受到高度限制,无论表面化学性质如何,这是由于空间位阻造成的。用伯胺基团(NH2)涂覆的 PS NP 在牛玻璃体的 pH 值(pH=7.2)下具有带正电荷的表面,并固定在玻璃体凝胶内。相比之下,在尺寸范围为 100-200nm 且颗粒浓度低于 0.0025%(w/v)的情况下,用 COOH 涂覆的 PS NP(具有带负电荷的表面)很容易通过玻璃体筛网扩散;在更高的浓度(约 0.1%w/v)下,这些纳米颗粒在玻璃体中聚集。基于不同大小的 PEG 化 PS NP(PS-PEG)的迁移率,我们估计新鲜牛玻璃体的平均筛网尺寸约为 550±50nm。对于大小为 1190nm 及以上的物体,牛玻璃体表现为不可渗透的弹性屏障,但对于直径小于 510nm 的非粘性物体,它表现为高度可渗透的粘弹性液体。根据这些研究,我们接下来试图研究载药和载 DNA 的纳米颗粒在牛玻璃体中的运输情况。由聚(乳酸-共-乙醇酸)(PLGA)为核心、聚(乙烯醇)为涂层的 227nm 直径的可生物降解 NP 迅速穿透玻璃体。具有 PEG 涂层(中性表面电荷;水动力直径~60nm)的棒状、高度致密的 CK30PEG10k/DNA 也在玻璃体中迅速扩散。这些发现将有助于指导基于纳米颗粒的治疗眼部威胁性眼病的治疗方法的发展。

相似文献

1
Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo.
J Control Release. 2013 Apr 10;167(1):76-84. doi: 10.1016/j.jconrel.2013.01.018. Epub 2013 Jan 28.
2
Validation of hyaluronic acid-agar-based hydrogels as vitreous humor mimetics for in vitro drug and particle migration evaluations.
Eur J Pharm Biopharm. 2020 Mar;148:118-125. doi: 10.1016/j.ejpb.2020.01.008. Epub 2020 Jan 22.
5
Controlled release of corticosteroid with biodegradable nanoparticles for treating experimental autoimmune uveitis.
J Control Release. 2019 Feb 28;296:68-80. doi: 10.1016/j.jconrel.2019.01.018. Epub 2019 Jan 17.
6
Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles.
Eur J Pharm Biopharm. 2019 Aug;141:70-80. doi: 10.1016/j.ejpb.2019.05.006. Epub 2019 May 10.
7
Nanoparticle penetration of human cervicovaginal mucus: the effect of polyvinyl alcohol.
J Control Release. 2014 Oct 28;192:202-8. doi: 10.1016/j.jconrel.2014.07.045. Epub 2014 Jul 29.
8
Diffusion and Protein Corona Formation of Lipid-Based Nanoparticles in the Vitreous Humor: Profiling and Pharmacokinetic Considerations.
Mol Pharm. 2021 Feb 1;18(2):699-713. doi: 10.1021/acs.molpharmaceut.0c00411. Epub 2020 Jul 8.
9
Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy.
J Control Release. 2015 Mar 28;202:83-92. doi: 10.1016/j.jconrel.2015.01.030. Epub 2015 Jan 26.
10
Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier.
Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19268-73. doi: 10.1073/pnas.0905998106. Epub 2009 Nov 9.

引用本文的文献

1
Nanomedicine-Based Ophthalmic Drug Delivery Systems for the Treatment of Ocular Diseases.
Int J Nanomedicine. 2025 Jul 21;20:9221-9249. doi: 10.2147/IJN.S532074. eCollection 2025.
3
Effect of Surface Properties of Chitosan-Based Nanoparticles in the Skin-Diffusion Rate.
Biopolymers. 2025 Mar;116(2):e70006. doi: 10.1002/bip.70006.
4
Nanotherapy for Neural Retinal Regeneration.
Adv Sci (Weinh). 2025 Jun;12(24):e2409854. doi: 10.1002/advs.202409854. Epub 2025 Jan 14.
5
Nanomedicine in Ophthalmology: From Bench to Bedside.
J Clin Med. 2024 Dec 16;13(24):7651. doi: 10.3390/jcm13247651.
6
Diffusion Coefficients of Coated Plasmonic Nanoparticles in Viscous Environment.
Small. 2024 Dec;20(49):e2404389. doi: 10.1002/smll.202404389. Epub 2024 Sep 24.
7
Mass transfer in heterogeneous biofilms: Key issues in biofilm reactors and AI-driven performance prediction.
Environ Sci Ecotechnol. 2024 Aug 29;22:100480. doi: 10.1016/j.ese.2024.100480. eCollection 2024 Nov.
8
Photoreceptor-targeted extracellular vesicles-mediated delivery of Cul7 siRNA for retinal degeneration therapy.
Theranostics. 2024 Aug 12;14(13):4916-4932. doi: 10.7150/thno.99484. eCollection 2024.
9
Biorobotic Drug Delivery for Biomedical Applications.
Molecules. 2024 Aug 2;29(15):3663. doi: 10.3390/molecules29153663.
10
Cationic-motif-modified exosomes for mRNA delivery to retinal photoreceptors.
J Mater Chem B. 2024 Jul 31;12(30):7384-7400. doi: 10.1039/d4tb00849a.

本文引用的文献

1
Mucus penetrating nanoparticles: biophysical tool and method of drug and gene delivery.
Adv Mater. 2012 Jul 24;24(28):3887-94. doi: 10.1002/adma.201201800.
2
A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue.
Sci Transl Med. 2012 Aug 29;4(149):149ra119. doi: 10.1126/scitranslmed.3003594.
5
The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection.
Biomaterials. 2012 Apr;33(12):3485-93. doi: 10.1016/j.biomaterials.2012.01.030. Epub 2012 Feb 7.
6
Liposomes for intravitreal drug delivery: a state of the art.
J Control Release. 2012 Jul 20;161(2):628-34. doi: 10.1016/j.jconrel.2012.01.019. Epub 2012 Jan 25.
7
Enhancement of airway gene transfer by DNA nanoparticles using a pH-responsive block copolymer of polyethylene glycol and poly-L-lysine.
Biomaterials. 2012 Mar;33(7):2361-71. doi: 10.1016/j.biomaterials.2011.11.080. Epub 2011 Dec 17.
8
Non-degradative intracellular trafficking of highly compacted polymeric DNA nanoparticles.
J Control Release. 2012 Feb 28;158(1):102-7. doi: 10.1016/j.jconrel.2011.10.031. Epub 2011 Oct 30.
9
Highly compacted DNA nanoparticles with low MW PEG coatings: in vitro, ex vivo and in vivo evaluation.
J Control Release. 2012 Jan 10;157(1):72-9. doi: 10.1016/j.jconrel.2011.08.031. Epub 2011 Aug 31.
10
Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus.
Biomaterials. 2011 Sep;32(26):6285-90. doi: 10.1016/j.biomaterials.2011.05.008. Epub 2011 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验