Suppr超能文献

沉降速度法和沉降平衡分析超离心法的当前方法概述

Overview of current methods in sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation.

作者信息

Zhao Huaying, Brautigam Chad A, Ghirlando Rodolfo, Schuck Peter

机构信息

Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

Curr Protoc Protein Sci. 2013 Feb;Chapter 20:Unit20.12. doi: 10.1002/0471140864.ps2012s71.

Abstract

Modern computational strategies have allowed for the direct modeling of the sedimentation process of heterogeneous mixtures, resulting in sedimentation velocity (SV) size-distribution analyses with significantly improved detection limits and strongly enhanced resolution. These advances have transformed the practice of SV, rendering it the primary method of choice for most existing applications of analytical ultracentrifugation (AUC), such as the study of protein self- and hetero-association, the study of membrane proteins, and applications in biotechnology. New global multisignal modeling and mass conservation approaches in SV and sedimentation equilibrium (SE), in conjunction with the effective-particle framework for interpreting the sedimentation boundary structure of interacting systems, as well as tools for explicit modeling of the reaction/diffusion/sedimentation equations to experimental data, have led to more robust and more powerful strategies for the study of reversible protein interactions and multiprotein complexes. Furthermore, modern mathematical modeling capabilities have allowed for a detailed description of many experimental aspects of the acquired data, thus enabling novel experimental opportunities, with important implications for both sample preparation and data acquisition. The goal of the current unit is to describe the current tools for the study of soluble proteins, detergent-solubilized membrane proteins and their interactions by SV and SE.

摘要

现代计算策略已能够对非均匀混合物的沉降过程进行直接建模,从而实现沉降速度(SV)尺寸分布分析,其检测限显著提高,分辨率也大大增强。这些进展改变了SV的应用实践,使其成为分析超速离心(AUC)大多数现有应用的主要选择方法,如蛋白质自缔合和异缔合研究、膜蛋白研究以及生物技术应用。SV和沉降平衡(SE)中的新全局多信号建模和质量守恒方法,结合用于解释相互作用系统沉降边界结构的有效粒子框架,以及将反应/扩散/沉降方程显式建模到实验数据的工具,为研究可逆蛋白质相互作用和多蛋白复合物带来了更稳健、更强大的策略。此外,现代数学建模能力已能够对所获取数据的许多实验方面进行详细描述,从而带来了新的实验机会,这对样品制备和数据采集都具有重要意义。本单元的目标是描述目前用于通过SV和SE研究可溶性蛋白质、去污剂增溶膜蛋白及其相互作用的工具。

相似文献

1
Overview of current methods in sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation.
Curr Protoc Protein Sci. 2013 Feb;Chapter 20:Unit20.12. doi: 10.1002/0471140864.ps2012s71.
2
Analytical Ultracentrifugation as a Tool for Studying Protein Interactions.
Biophys Rev. 2013 Jun 1;5(2):159-171. doi: 10.1007/s12551-013-0106-2.
3
On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation.
Anal Biochem. 2003 Sep 1;320(1):104-24. doi: 10.1016/s0003-2697(03)00289-6.
4
Characterizing protein-protein interactions by sedimentation velocity analytical ultracentrifugation.
Curr Protoc Immunol. 2008 May;Chapter 18:18.15.1-18.15.39. doi: 10.1002/0471142735.im1815s81.
5
Elucidating Complicated Assembling Systems in Biology Using Size-and-Shape Analysis of Sedimentation Velocity Data.
Methods Enzymol. 2015;562:187-204. doi: 10.1016/bs.mie.2015.04.004. Epub 2015 Jun 19.
6
Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium.
Methods Cell Biol. 2008;84:143-79. doi: 10.1016/S0091-679X(07)84006-4.
7
Modern analytical ultracentrifugation in protein science: a tutorial review.
Protein Sci. 2002 Sep;11(9):2067-79. doi: 10.1110/ps.0207702.

引用本文的文献

4
Specificity and mechanism of the double-stranded RNA-specific J2 monoclonal antibody.
bioRxiv. 2025 May 10:2025.05.09.649859. doi: 10.1101/2025.05.09.649859.
5
Asymmetric loading of TnsE regulates Tn7 targeting of DNA replication structures.
Nucleic Acids Res. 2025 Jun 6;53(11). doi: 10.1093/nar/gkaf472.
6
Isoleucine Binding and Regulation of and Threonine Dehydratase (IlvA).
Biochemistry. 2025 Jul 1;64(13):2793-2810. doi: 10.1021/acs.biochem.5c00168. Epub 2025 Jun 10.
7
Structure-function studies of a nucleoplasmin isoform from Plasmodium falciparum.
J Biol Chem. 2025 Apr;301(4):108379. doi: 10.1016/j.jbc.2025.108379. Epub 2025 Mar 4.
10
Persistent splenic-derived IgMs preferentially recognize factor VIII A2 and C2 domain epitopes but do not alter antibody production.
J Thromb Haemost. 2025 Feb;23(2):440-457. doi: 10.1016/j.jtha.2024.10.017. Epub 2024 Oct 28.

本文引用的文献

1
Biophysical characterization of membrane proteins in nanodiscs.
Methods. 2013 Mar;59(3):287-300. doi: 10.1016/j.ymeth.2012.11.006. Epub 2012 Dec 3.
2
Global multi-method analysis of affinities and cooperativity in complex systems of macromolecular interactions.
Anal Chem. 2012 Nov 6;84(21):9513-9. doi: 10.1021/ac302357w. Epub 2012 Oct 16.
3
Analysis of high-affinity assembly for AMPA receptor amino-terminal domains.
J Gen Physiol. 2012 May;139(5):371-88. doi: 10.1085/jgp.201210770. Epub 2012 Apr 16.
4
MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA.
EMBO J. 2012 Apr 4;31(7):1714-26. doi: 10.1038/emboj.2012.19. Epub 2012 Feb 7.
6
The effective time of centrifugation for the analysis of boundary spreading in sedimentation velocity experiments.
Anal Biochem. 2012 Feb 15;421(2):755-8. doi: 10.1016/j.ab.2011.11.035. Epub 2011 Dec 2.
7
Density contrast sedimentation velocity for the determination of protein partial-specific volumes.
PLoS One. 2011;6(10):e26221. doi: 10.1371/journal.pone.0026221. Epub 2011 Oct 20.
8
Arp2/3 complex is bound and activated by two WASP proteins.
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):E472-9. doi: 10.1073/pnas.1100236108. Epub 2011 Jun 15.
10
On the distribution of protein refractive index increments.
Biophys J. 2011 May 4;100(9):2309-17. doi: 10.1016/j.bpj.2011.03.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验