Suppr超能文献

西班牙女性浸润性乳腺癌风险预测 Gail 模型的重新校准:基于人群的队列研究。

Recalibration of the Gail model for predicting invasive breast cancer risk in Spanish women: a population-based cohort study.

机构信息

National Center for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029 Madrid, Spain.

出版信息

Breast Cancer Res Treat. 2013 Feb;138(1):249-59. doi: 10.1007/s10549-013-2428-y. Epub 2013 Feb 3.

Abstract

The Gail model for predicting the absolute risk of invasive breast cancer has been validated extensively in US populations, but its performance in the international setting remains uncertain. We evaluated the predictive accuracy of the Gail model in 54,649 Spanish women aged 45-68 years who were free of breast cancer at the 1996-1998 baseline mammographic examination in the population-based Navarre Breast Cancer Screening Program. Incident cases of invasive breast cancer and competing deaths were ascertained until the end of 2005 (average follow-up of 7.7 years) through linkage with population-based cancer and mortality registries. The Gail model was tested for calibration and discrimination in its original form and after recalibration to the lower breast cancer incidence and risk factor prevalence in the study cohort, and compared through cross-validation with a Navarre model fully developed from this cohort. The original Gail model overpredicted significantly the 835 cases of invasive breast cancer observed in the cohort (ratio of expected to observed cases 1.46, 95 % CI 1.36-1.56). The recalibrated Gail model was well calibrated overall (expected-to-observed ratio 1.00, 95 % CI 0.94-1.07), but it tended to underestimate risk for women in low-risk quintiles and to overestimate risk in high-risk quintiles (P = 0.01). The Navarre model showed good cross-validated calibration overall (expected-to-observed ratio 0.98, 95 % CI 0.92-1.05) and in different cohort subsets. The Navarre and Gail models had modest cross-validated discrimination indexes of 0.542 (95 % CI 0.521-0.564) and 0.544 (95 % CI 0.523-0.565), respectively. Although the original Gail model cannot be applied directly to populations with different underlying rates of invasive breast cancer, it can readily be recalibrated to provide unbiased estimates of absolute risk in such populations. Nevertheless, its limited discrimination ability at the individual level highlights the need to develop extended models with additional strong risk factors.

摘要

加氏模型预测浸润性乳腺癌的绝对风险已在美国人群中得到广泛验证,但在国际环境中的性能仍不确定。我们评估了加氏模型在 54649 名年龄在 45-68 岁之间的西班牙妇女中的预测准确性,这些妇女在 1996-1998 年基于人群的纳瓦拉乳腺癌筛查计划的基线乳房 X 光检查中无乳腺癌。通过与基于人群的癌症和死亡率登记处的链接,确定浸润性乳腺癌的发病病例和竞争死亡病例,直至 2005 年底(平均随访 7.7 年)。加氏模型在其原始形式以及根据研究队列中较低的乳腺癌发病率和风险因素流行率进行重新校准后,分别进行了校准和区分能力的测试,并通过与完全由该队列开发的纳瓦拉模型进行交叉验证进行了比较。原始的 Gail 模型显著高估了队列中观察到的 835 例浸润性乳腺癌病例(预期病例与观察病例的比值为 1.46,95%CI1.36-1.56)。重新校准的 Gail 模型总体上具有良好的校准(预期-观察比值为 1.00,95%CI0.94-1.07),但倾向于低估低风险五分位数的风险,高估高风险五分位数的风险(P=0.01)。纳瓦拉模型总体上具有良好的交叉验证校准(预期-观察比值为 0.98,95%CI0.92-1.05),并且在不同的队列子集中也是如此。纳瓦拉和加氏模型的交叉验证区分指数分别为 0.542(95%CI0.521-0.564)和 0.544(95%CI0.523-0.565)。虽然原始的 Gail 模型不能直接应用于浸润性乳腺癌基础发病率不同的人群,但它可以很容易地重新校准,以提供此类人群中绝对风险的无偏估计。然而,其在个体水平上的有限区分能力突出了需要开发具有额外强风险因素的扩展模型。

相似文献

1
Recalibration of the Gail model for predicting invasive breast cancer risk in Spanish women: a population-based cohort study.
Breast Cancer Res Treat. 2013 Feb;138(1):249-59. doi: 10.1007/s10549-013-2428-y. Epub 2013 Feb 3.
2
Effect of changing breast cancer incidence rates on the calibration of the Gail model.
J Clin Oncol. 2010 May 10;28(14):2411-7. doi: 10.1200/JCO.2009.25.2767. Epub 2010 Apr 5.
3
Mammographic breast density and the Gail model for breast cancer risk prediction in a screening population.
Breast Cancer Res Treat. 2005 Nov;94(2):115-22. doi: 10.1007/s10549-005-5152-4.
4
Validation of the Gail et al. model of breast cancer risk prediction and implications for chemoprevention.
J Natl Cancer Inst. 2001 Mar 7;93(5):358-66. doi: 10.1093/jnci/93.5.358.
7
Prospective validation of the NCI Breast Cancer Risk Assessment Tool (Gail Model) on 40,000 Australian women.
Breast Cancer Res. 2018 Dec 20;20(1):155. doi: 10.1186/s13058-018-1084-x.

引用本文的文献

1
Development and performance of female breast cancer incidence risk prediction models: a systematic review and meta-analysis.
Ann Med. 2025 Dec;57(1):2534522. doi: 10.1080/07853890.2025.2534522. Epub 2025 Jul 20.
2
Use and Applicability of the Gail Model to Calculate Breast Cancer Risk: A Scoping Review.
Asian Pac J Cancer Prev. 2022 Apr 1;23(4):1117-1123. doi: 10.31557/APJCP.2022.23.4.1117.
5
Prospective Evaluation of the Addition of Polygenic Risk Scores to Breast Cancer Risk Models.
JNCI Cancer Spectr. 2021 Mar 2;5(3). doi: 10.1093/jncics/pkab021. eCollection 2021 Jun.
6
Deep Learning Image Analysis of Benign Breast Disease to Identify Subsequent Risk of Breast Cancer.
JNCI Cancer Spectr. 2021 Jan 11;5(1). doi: 10.1093/jncics/pkaa119. eCollection 2021 Feb.
7
Assessment of the risk of developing breast cancer using the Gail model in Asian females: A systematic review.
Heliyon. 2020 Apr 22;6(4):e03794. doi: 10.1016/j.heliyon.2020.e03794. eCollection 2020 Apr.
8
Validation of two US breast cancer risk prediction models in German women.
Cancer Causes Control. 2020 Jun;31(6):525-536. doi: 10.1007/s10552-020-01272-6. Epub 2020 Apr 6.
10
Prospective validation of the NCI Breast Cancer Risk Assessment Tool (Gail Model) on 40,000 Australian women.
Breast Cancer Res. 2018 Dec 20;20(1):155. doi: 10.1186/s13058-018-1084-x.

本文引用的文献

3
Evaluating breast cancer risk projections for Hispanic women.
Breast Cancer Res Treat. 2012 Feb;132(1):347-53. doi: 10.1007/s10549-011-1900-9. Epub 2011 Dec 7.
4
A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance.
Breast Cancer Res Treat. 2012 Apr;132(2):365-77. doi: 10.1007/s10549-011-1818-2. Epub 2011 Oct 22.
5
[Social determinants of overweight and obesity in Spain in 2006].
Med Clin (Barc). 2011 Dec 10;137(15):678-84. doi: 10.1016/j.medcli.2010.12.025. Epub 2011 Jul 14.
6
Exemestane for breast-cancer prevention in postmenopausal women.
N Engl J Med. 2011 Jun 23;364(25):2381-91. doi: 10.1056/NEJMoa1103507. Epub 2011 Jun 4.
7
Personalized estimates of breast cancer risk in clinical practice and public health.
Stat Med. 2011 May 10;30(10):1090-104. doi: 10.1002/sim.4187. Epub 2011 Feb 21.
9
Cancer screening in Spain.
Ann Oncol. 2010 May;21 Suppl 3:iii43-51. doi: 10.1093/annonc/mdq085.
10
Effect of changing breast cancer incidence rates on the calibration of the Gail model.
J Clin Oncol. 2010 May 10;28(14):2411-7. doi: 10.1200/JCO.2009.25.2767. Epub 2010 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验