All-Russian Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Moscow, 127550, Russia.
Biochemistry (Mosc). 2013 Jan;78(1):41-52. doi: 10.1134/S0006297913010057.
Hydrolysis of DNA catalyzed by wheat endonucleases WEN1 and WEN2 is pronouncedly processive. A correlation has been revealed between appearance of new products of DNA hydrolysis with different length and conformational changes in the enzymes. The first conformational conversion of the endonucleases is associated with appearance of large fragments of DNA hydrolysis with length longer than 500 bp, and the second conversion is associated with formation of oligonucleotides with length of 120-140 bp, and the third conversion is associated with formation of short oligonucleotides and mononucleotides. Formation of the DNA-enzyme complex is accompanied by appearance of fluorescence at λ = 410-440 nm. The intensity, positions, and numbers of maximums of the fluorescence spectra of DNA-WEN1 and DNA-WEN2 complexes are different and depend on the methylation status of the DNA and on the presence of Mg2+. The endonucleases hydrolyze DNA by two mechanisms: one is metal-independent, and the other depends on one or two Mg2+ ions. One Mg2+ ion is located inside the catalytic center of WEN1, whereas the WEN2 center contains two Mg2+ ions. The first (site-specific) stage of DNA hydrolysis does not depend on Mg2+. Mg2+ ions evoke changes in the site specificity of the endonuclease action (WEN1) and abolish their ability to recognize the methylation status of DNA. Products of DNA hydrolysis by endonucleases WEN1 and WEN2 in the presence of Mg2+ are similar in length (120-140 bp). The endonucleases have at least two centers (domains) - catalytic and substrate-binding. Two histidine and apparently two lysine plus two dicarboxylic amino acid residues are present inside the catalytic center of WEN1. The catalytic center of WEN2 contains at least one histidine residue and apparently two residues of aspartic or glutamic acid, which are involved in coordination of the metal ions. The catalytic centers of WEN1 and WEN2 seem to be formed, respectively, by HD/E(D/EK)KH and HD/ED/E amino acid residues. The site-specificity of the endonuclease action is due to the DNA-binding domain. This domain contains dicarboxylic amino acid residues, which seem to be responsible for sensitivity of the enzymes to the methylation status of DNA. The hydroxyl groups of tyrosine residues in the enzymes also seem to contribute to recognizing methylated bases in DNA.
小麦核酸内切酶 WEN1 和 WEN2 催化的 DNA 水解具有明显的连续性。在酶的构象变化与 DNA 水解的新产物的出现之间揭示了相关性。核酸内切酶的第一个构象转换与长度大于 500bp 的 DNA 水解大片段的出现有关,第二个转换与长度为 120-140bp 的寡核苷酸的形成有关,第三个转换与短寡核苷酸和单核苷酸的形成有关。DNA-酶复合物的形成伴随着 λ=410-440nm 处的荧光出现。DNA-WEN1 和 DNA-WEN2 复合物荧光光谱的强度、位置和最大值的数量不同,并且取决于 DNA 的甲基化状态和 Mg2+的存在。核酸内切酶通过两种机制水解 DNA:一种是不依赖金属的,另一种依赖一个或两个 Mg2+离子。一个 Mg2+离子位于 WEN1 的催化中心内,而 WEN2 中心包含两个 Mg2+离子。DNA 水解的第一个(位点特异性)阶段不依赖于 Mg2+。Mg2+离子引发核酸内切酶作用的位点特异性变化(WEN1),并消除其识别 DNA 甲基化状态的能力。在 Mg2+存在下,WEN1 和 WEN2 核酸内切酶水解的 DNA 产物在长度上相似(120-140bp)。核酸内切酶至少有两个中心(结构域)-催化和底物结合。WEN1 的催化中心内有两个组氨酸和显然两个赖氨酸加两个二羧酸氨基酸残基。WEN2 的催化中心至少含有一个组氨酸残基和显然两个天冬氨酸或谷氨酸残基,这些残基参与金属离子的配位。WEN1 和 WEN2 的催化中心似乎分别由 HD/E(D/EK)KH 和 HD/ED/E 氨基酸残基形成。核酸内切酶作用的位点特异性归因于 DNA 结合域。该结构域包含二羧酸氨基酸残基,这些残基似乎负责酶对 DNA 甲基化状态的敏感性。酶中的酪氨酸残基的羟基似乎也有助于识别 DNA 中的甲基化碱基。