Suppr超能文献

基于网络的多变量基因表达数据分析

Network-based analysis of multivariate gene expression data.

作者信息

Zhi Wei, Minturn Jane, Rappaport Eric, Brodeur Garrett, Li Hongzhe

机构信息

Department of Biostatistics and Epidemiology, New Jersey Institute of Technology, Newark, NJ, USA.

出版信息

Methods Mol Biol. 2013;972:121-39. doi: 10.1007/978-1-60327-337-4_8.

Abstract

Multivariate microarray gene expression data are commonly collected to study the genomic responses under ordered conditions such as over increasing/decreasing dose levels or over time during biological processes, where the expression levels of a give gene are expected to be dependent. One important question from such multivariate gene expression experiments is to identify genes that show different expression patterns over treatment dosages or over time; these genes can also point to the pathways that are perturbed during a given biological process. Several empirical Bayes approaches have been developed for identifying the differentially expressed genes in order to account for the parallel structure of the data and to borrow information across all the genes. However, these methods assume that the genes are independent. In this paper, we introduce an alternative empirical Bayes approach for analysis of multivariate gene expression data by assuming a discrete Markov random field (MRF) prior, where the dependency of the differential expression patterns of genes on the networks are modeled by a Markov random field. Simulation studies indicated that the method is quite effective in identifying genes and the modified subnetworks and has higher sensitivity than the commonly used procedures that do not use the pathway information, with similar observed false discovery rates. We applied the proposed methods for analysis of a microarray time course gene expression study of TrkA- and TrkB-transfected neuroblastoma cell lines and identified genes and subnetworks on MAPK, focal adhesion, and prion disease pathways that may explain cell differentiation in TrkA-transfected cell lines.

摘要

多变量微阵列基因表达数据通常是为了研究在有序条件下的基因组反应而收集的,比如在生物过程中剂量水平增加/减少或随时间变化的情况下,其中给定基因的表达水平预计是相关的。这类多变量基因表达实验的一个重要问题是识别在处理剂量或时间上表现出不同表达模式的基因;这些基因也可以指向在给定生物过程中受到干扰的途径。已经开发了几种经验贝叶斯方法来识别差异表达基因,以便考虑数据的平行结构并在所有基因之间借用信息。然而,这些方法假设基因是独立的。在本文中,我们通过假设离散马尔可夫随机场(MRF)先验,引入了一种用于分析多变量基因表达数据的替代经验贝叶斯方法,其中基因差异表达模式在网络上的依赖性由马尔可夫随机场建模。模拟研究表明,该方法在识别基因和修改后的子网方面相当有效,并且比不使用途径信息的常用程序具有更高的灵敏度,同时观察到的错误发现率相似。我们将所提出的方法应用于对TrkA和TrkB转染的神经母细胞瘤细胞系的微阵列时间进程基因表达研究的分析,并确定了可能解释TrkA转染细胞系中细胞分化的丝裂原活化蛋白激酶(MAPK)、粘着斑和朊病毒病途径上的基因和子网。

相似文献

1
Network-based analysis of multivariate gene expression data.
Methods Mol Biol. 2013;972:121-39. doi: 10.1007/978-1-60327-337-4_8.
2
A Markov random field model for network-based analysis of genomic data.
Bioinformatics. 2007 Jun 15;23(12):1537-44. doi: 10.1093/bioinformatics/btm129. Epub 2007 May 5.
4
Network-based empirical Bayes methods for linear models with applications to genomic data.
J Biopharm Stat. 2010 Mar;20(2):209-22. doi: 10.1080/10543400903572712.
5
Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data.
Bioinformatics. 2011 Feb 15;27(4):495-501. doi: 10.1093/bioinformatics/btq690. Epub 2010 Dec 14.
6
Identifying pathogenic processes by integrating microarray data with prior knowledge.
BMC Bioinformatics. 2014 Apr 24;15:115. doi: 10.1186/1471-2105-15-115.
7
Prognostic and biological role of neurotrophin-receptor TrkA and TrkB in neuroblastoma.
Klin Padiatr. 2000 Jul-Aug;212(4):200-5. doi: 10.1055/s-2000-9677.
8
CMRF: analyzing differential gene regulation in two group perturbation experiments.
BMC Genomics. 2012 Apr 12;13 Suppl 2(Suppl 2):S2. doi: 10.1186/1471-2164-13-S2-S2.
10
Assessing differential expression in two-color microarrays: a resampling-based empirical Bayes approach.
PLoS One. 2013 Nov 27;8(11):e80099. doi: 10.1371/journal.pone.0080099. eCollection 2013.

引用本文的文献

1
A twin analysis to estimate genetic and environmental factors contributing to variation in weighted gene co-expression network module eigengenes.
Am J Med Genet B Neuropsychiatr Genet. 2025 Jan;198(1):e33003. doi: 10.1002/ajmg.b.33003. Epub 2024 Aug 9.
2
LARGE-SCALE MULTIPLE INFERENCE OF COLLECTIVE DEPENDENCE WITH APPLICATIONS TO PROTEIN FUNCTION.
Ann Appl Stat. 2021 Jun;15(2):902-924. doi: 10.1214/20-aoas1431. Epub 2021 Jul 12.
3
A null model for Pearson coexpression networks.
PLoS One. 2015 Jun 1;10(6):e0128115. doi: 10.1371/journal.pone.0128115. eCollection 2015.
4
Neuroblastoma tyrosine kinase signaling networks involve FYN and LYN in endosomes and lipid rafts.
PLoS Comput Biol. 2015 Apr 17;11(4):e1004130. doi: 10.1371/journal.pcbi.1004130. eCollection 2015 Apr.
5
The common ground of genomics and systems biology.
BMC Syst Biol. 2014;8 Suppl 2(Suppl 2):S1. doi: 10.1186/1752-0509-8-S2-S1. Epub 2014 Mar 13.

本文引用的文献

1
FAK and IGF-IR interact to provide survival signals in human pancreatic adenocarcinoma cells.
Carcinogenesis. 2008 Jun;29(6):1096-107. doi: 10.1093/carcin/bgn026. Epub 2008 Feb 7.
2
3
Incorporating gene networks into statistical tests for genomic data via a spatially correlated mixture model.
Bioinformatics. 2008 Feb 1;24(3):404-11. doi: 10.1093/bioinformatics/btm612. Epub 2007 Dec 14.
4
A Markov random field model for network-based analysis of genomic data.
Bioinformatics. 2007 Jun 15;23(12):1537-44. doi: 10.1093/bioinformatics/btm129. Epub 2007 May 5.
5
N-MYC regulates focal adhesion kinase expression in human neuroblastoma.
J Biol Chem. 2007 Apr 27;282(17):12503-16. doi: 10.1074/jbc.M701450200. Epub 2007 Feb 27.
6
Functional hierarchical models for identifying genes with different time-course expression profiles.
Biometrics. 2006 Jun;62(2):534-44. doi: 10.1111/j.1541-0420.2005.00505.x.
7
Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
Stat Appl Genet Mol Biol. 2004;3:Article3. doi: 10.2202/1544-6115.1027. Epub 2004 Feb 12.
8
Gene expression dose-response of liver with a genotoxic and nongenotoxic carcinogen.
Int J Toxicol. 2006 Jan-Feb;25(1):57-64. doi: 10.1080/10915810500488429.
10
The Biomolecular Interaction Network Database and related tools 2005 update.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D418-24. doi: 10.1093/nar/gki051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验