Suppr超能文献

利用低功耗 CytoMimetic 电路系统计算非线性细胞和分子动力学:一项模拟研究。

Systematic computation of nonlinear cellular and molecular dynamics with low-power CytoMimetic circuits: a simulation study.

机构信息

Department of Bioengineering of Imperial College, South Kensington Campus, London, United Kingdom.

出版信息

PLoS One. 2013;8(2):e53591. doi: 10.1371/journal.pone.0053591. Epub 2013 Feb 5.

Abstract

This paper presents a novel method for the systematic implementation of low-power microelectronic circuits aimed at computing nonlinear cellular and molecular dynamics. The method proposed is based on the Nonlinear Bernoulli Cell Formalism (NBCF), an advanced mathematical framework stemming from the Bernoulli Cell Formalism (BCF) originally exploited for the modular synthesis and analysis of linear, time-invariant, high dynamic range, logarithmic filters. Our approach identifies and exploits the striking similarities existing between the NBCF and coupled nonlinear ordinary differential equations (ODEs) typically appearing in models of naturally encountered biochemical systems. The resulting continuous-time, continuous-value, low-power CytoMimetic electronic circuits succeed in simulating fast and with good accuracy cellular and molecular dynamics. The application of the method is illustrated by synthesising for the first time microelectronic CytoMimetic topologies which simulate successfully: 1) a nonlinear intracellular calcium oscillations model for several Hill coefficient values and 2) a gene-protein regulatory system model. The dynamic behaviours generated by the proposed CytoMimetic circuits are compared and found to be in very good agreement with their biological counterparts. The circuits exploit the exponential law codifying the low-power subthreshold operation regime and have been simulated with realistic parameters from a commercially available CMOS process. They occupy an area of a fraction of a square-millimetre, while consuming between 1 and 12 microwatts of power. Simulations of fabrication-related variability results are also presented.

摘要

本文提出了一种新颖的方法,用于系统地实现旨在计算非线性细胞和分子动力学的低功耗微电子电路。所提出的方法基于非线性伯努利细胞形式主义(NBCF),这是一种源自伯努利细胞形式主义(BCF)的高级数学框架,最初用于线性、时不变、高动态范围、对数滤波器的模块化综合和分析。我们的方法识别并利用了 NBCF 与自然遇到的生化系统模型中通常出现的耦合非线性常微分方程(ODE)之间存在的惊人相似性。由此产生的连续时间、连续值、低功耗细胞模拟电子电路成功地模拟了快速且具有良好精度的细胞和分子动力学。该方法的应用通过首次合成微电子细胞模拟拓扑结构来说明,这些拓扑结构成功地模拟了:1)几个 Hill 系数值的非线性细胞内钙振荡模型,2)基因-蛋白质调节系统模型。所提出的细胞模拟电路产生的动态行为与它们的生物学对应物进行了比较,并发现非常吻合。这些电路利用了编码低功耗亚阈值操作模式的指数定律,并且已经使用来自商业上可用的 CMOS 工艺的现实参数进行了模拟。它们占据了不到一平方毫米的面积,同时消耗 1 到 12 微瓦的功率。还呈现了与制造相关的可变性结果的模拟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af27/3564950/7ea1dd8d3569/pone.0053591.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验