Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
J Am Chem Soc. 2013 Mar 27;135(12):4735-42. doi: 10.1021/ja311641b. Epub 2013 Mar 13.
DNA polymerases replicate DNA by catalyzing the template-directed polymerization of deoxynucleoside triphosphate (dNTP) substrates onto the 3' end of a growing DNA primer strand. Many DNA polymerases also possess a separate 3'-5' exonuclease activity that is used to remove misincorporated nucleotides from the nascent DNA (proofreading). The polymerase (pol) and exonuclease (exo) activities are spatially separated in different enzyme domains, indicating that a mechanism must exist to transfer the growing primer terminus from one site to the other. Here we report a single-molecule Förster resonance energy transfer (smFRET) system that directly monitors the movement of a DNA substrate between the pol and exo sites of DNA polymerase I Klenow fragment (KF). FRET trajectories recorded during the encounter between single polymerase and DNA molecules reveal that DNA can channel between the pol and exo sites in both directions while remaining closely associated with the enzyme (intramolecular transfer). In addition, it is evident from the trajectories that DNA can also dissociate from one site and subsequently rebind at the other (intermolecular transfer). Rate constants for each pathway have been determined by dwell-time analysis, revealing that intramolecular transfer is the faster of the two pathways. Unexpectedly, a mispaired primer terminus accesses the exo site more frequently when dNTP substrates are also present in solution, which is expected to enhance proofreading. Together, these results explain how the separate pol and exo activities of KF are physically coordinated to achieve efficient proofreading.
DNA 聚合酶通过催化脱氧核苷三磷酸 (dNTP) 底物在生长的 DNA 引物链的 3' 端模板指导聚合,从而复制 DNA。许多 DNA 聚合酶还具有单独的 3'-5' 外切核酸酶活性,用于从新生 DNA(校对)中去除错配的核苷酸。聚合酶(pol)和外切核酸酶(exo)活性在不同的酶结构域中空间分离,表明必须存在一种机制将生长的引物末端从一个位置转移到另一个位置。在这里,我们报告了一种单分子Förster 共振能量转移 (smFRET) 系统,该系统可直接监测 DNA 聚合酶 I Klenow 片段 (KF) 的 pol 和 exo 位点之间 DNA 底物的运动。在单个聚合酶和 DNA 分子之间的相遇过程中记录的 FRET 轨迹表明,DNA 可以在两个方向上在 pol 和 exo 位点之间形成通道,同时与酶保持紧密结合(分子内转移)。此外,从轨迹中可以明显看出,DNA 也可以从一个位点解离,然后在另一个位点重新结合(分子间转移)。通过停留时间分析确定了每条途径的速率常数,结果表明分子内转移是两种途径中较快的一种。出乎意料的是,当溶液中也存在 dNTP 底物时,错配的引物末端更频繁地进入 exo 位点,这有望增强校对。总之,这些结果解释了 KF 的单独 pol 和 exo 活性如何通过物理协调来实现有效的校对。