Suppr超能文献

DNA 聚合酶中的位点转换动力学。

Dynamics of site switching in DNA polymerase.

机构信息

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.

出版信息

J Am Chem Soc. 2013 Mar 27;135(12):4735-42. doi: 10.1021/ja311641b. Epub 2013 Mar 13.

Abstract

DNA polymerases replicate DNA by catalyzing the template-directed polymerization of deoxynucleoside triphosphate (dNTP) substrates onto the 3' end of a growing DNA primer strand. Many DNA polymerases also possess a separate 3'-5' exonuclease activity that is used to remove misincorporated nucleotides from the nascent DNA (proofreading). The polymerase (pol) and exonuclease (exo) activities are spatially separated in different enzyme domains, indicating that a mechanism must exist to transfer the growing primer terminus from one site to the other. Here we report a single-molecule Förster resonance energy transfer (smFRET) system that directly monitors the movement of a DNA substrate between the pol and exo sites of DNA polymerase I Klenow fragment (KF). FRET trajectories recorded during the encounter between single polymerase and DNA molecules reveal that DNA can channel between the pol and exo sites in both directions while remaining closely associated with the enzyme (intramolecular transfer). In addition, it is evident from the trajectories that DNA can also dissociate from one site and subsequently rebind at the other (intermolecular transfer). Rate constants for each pathway have been determined by dwell-time analysis, revealing that intramolecular transfer is the faster of the two pathways. Unexpectedly, a mispaired primer terminus accesses the exo site more frequently when dNTP substrates are also present in solution, which is expected to enhance proofreading. Together, these results explain how the separate pol and exo activities of KF are physically coordinated to achieve efficient proofreading.

摘要

DNA 聚合酶通过催化脱氧核苷三磷酸 (dNTP) 底物在生长的 DNA 引物链的 3' 端模板指导聚合,从而复制 DNA。许多 DNA 聚合酶还具有单独的 3'-5' 外切核酸酶活性,用于从新生 DNA(校对)中去除错配的核苷酸。聚合酶(pol)和外切核酸酶(exo)活性在不同的酶结构域中空间分离,表明必须存在一种机制将生长的引物末端从一个位置转移到另一个位置。在这里,我们报告了一种单分子Förster 共振能量转移 (smFRET) 系统,该系统可直接监测 DNA 聚合酶 I Klenow 片段 (KF) 的 pol 和 exo 位点之间 DNA 底物的运动。在单个聚合酶和 DNA 分子之间的相遇过程中记录的 FRET 轨迹表明,DNA 可以在两个方向上在 pol 和 exo 位点之间形成通道,同时与酶保持紧密结合(分子内转移)。此外,从轨迹中可以明显看出,DNA 也可以从一个位点解离,然后在另一个位点重新结合(分子间转移)。通过停留时间分析确定了每条途径的速率常数,结果表明分子内转移是两种途径中较快的一种。出乎意料的是,当溶液中也存在 dNTP 底物时,错配的引物末端更频繁地进入 exo 位点,这有望增强校对。总之,这些结果解释了 KF 的单独 pol 和 exo 活性如何通过物理协调来实现有效的校对。

相似文献

1
Dynamics of site switching in DNA polymerase.
J Am Chem Soc. 2013 Mar 27;135(12):4735-42. doi: 10.1021/ja311641b. Epub 2013 Mar 13.
2
Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding.
Biochemistry. 2007 Jul 10;46(27):8085-99. doi: 10.1021/bi6024148. Epub 2007 Jun 14.
5
Single-molecule Förster resonance energy transfer reveals an innate fidelity checkpoint in DNA polymerase I.
J Am Chem Soc. 2012 Jul 11;134(27):11261-8. doi: 10.1021/ja3038273. Epub 2012 Jun 29.
7
Conformational transitions in DNA polymerase I revealed by single-molecule FRET.
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):715-20. doi: 10.1073/pnas.0910909107. Epub 2009 Dec 18.
9
Secondary Interaction Interfaces with PCNA Control Conformational Switching of DNA Polymerase PolB from Polymerization to Editing.
J Phys Chem B. 2016 Aug 25;120(33):8379-88. doi: 10.1021/acs.jpcb.6b02082. Epub 2016 May 4.

引用本文的文献

1
The proofreading mechanism of the human leading-strand DNA polymerase ε holoenzyme.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2507232122. doi: 10.1073/pnas.2507232122. Epub 2025 May 29.
2
The POLγ Y951N patient mutation disrupts the switch between DNA synthesis and proofreading, triggering mitochondrial DNA instability.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2417477122. doi: 10.1073/pnas.2417477122. Epub 2025 Apr 16.
3
Sequential requirements for distinct Polθ domains during theta-mediated end joining.
Mol Cell. 2024 Apr 18;84(8):1460-1474.e6. doi: 10.1016/j.molcel.2024.03.010.
4
Structural basis for DNA proofreading.
Nat Commun. 2023 Dec 27;14(1):8501. doi: 10.1038/s41467-023-44198-8.
5
Polγ coordinates DNA synthesis and proofreading to ensure mitochondrial genome integrity.
Nat Struct Mol Biol. 2023 Jun;30(6):812-823. doi: 10.1038/s41594-023-00980-2. Epub 2023 May 18.
6
Substrate Specificity and Kinetics of RNA Hydrolysis by SARS-CoV-2 NSP10/14 Exonuclease.
ACS Bio Med Chem Au. 2022 Dec 21;2(6):600-606. doi: 10.1021/acsbiomedchemau.2c00046. Epub 2022 Nov 16.
7
Conformational Dynamics of DNA Polymerases Revealed at the Single-Molecule Level.
Front Mol Biosci. 2022 Feb 25;9:826593. doi: 10.3389/fmolb.2022.826593. eCollection 2022.
8
When DNA Polymerases Multitask: Functions Beyond Nucleotidyl Transfer.
Front Mol Biosci. 2022 Jan 7;8:815845. doi: 10.3389/fmolb.2021.815845. eCollection 2021.
9
The Rate-limiting Step of DNA Synthesis by DNA Polymerase Occurs in the Fingers-closed Conformation.
J Mol Biol. 2022 Jan 30;434(2):167410. doi: 10.1016/j.jmb.2021.167410. Epub 2021 Dec 17.
10
DNA replication machinery: Insights from single-molecule approaches.
Comput Struct Biotechnol J. 2021 Apr 20;19:2057-2069. doi: 10.1016/j.csbj.2021.04.013. eCollection 2021.

本文引用的文献

1
Single-molecule Förster resonance energy transfer reveals an innate fidelity checkpoint in DNA polymerase I.
J Am Chem Soc. 2012 Jul 11;134(27):11261-8. doi: 10.1021/ja3038273. Epub 2012 Jun 29.
2
Single-molecule FRET of protein-nucleic acid and protein-protein complexes: surface passivation and immobilization.
Methods. 2010 Oct;52(2):192-200. doi: 10.1016/j.ymeth.2010.06.010. Epub 2010 Jun 8.
3
Conformational transitions in DNA polymerase I revealed by single-molecule FRET.
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):715-20. doi: 10.1073/pnas.0910909107. Epub 2009 Dec 18.
4
Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase delta.
Nat Struct Mol Biol. 2009 Sep;16(9):979-86. doi: 10.1038/nsmb.1663. Epub 2009 Aug 30.
6
Structure of PolC reveals unique DNA binding and fidelity determinants.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20695-700. doi: 10.1073/pnas.0809989106. Epub 2008 Dec 23.
7
Conformational dynamics of DNA polymerase probed with a novel fluorescent DNA base analogue.
Biochemistry. 2007 Oct 30;46(43):12289-97. doi: 10.1021/bi700755m. Epub 2007 Oct 4.
8
DNA polymerase proofreading: active site switching catalyzed by the bacteriophage T4 DNA polymerase.
Nucleic Acids Res. 2007;35(16):5452-63. doi: 10.1093/nar/gkm591. Epub 2007 Aug 15.
9
A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures.
Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2649-54. doi: 10.1073/pnas.0611503104. Epub 2007 Feb 13.
10
Analysis of single-molecule FRET trajectories using hidden Markov modeling.
Biophys J. 2006 Sep 1;91(5):1941-51. doi: 10.1529/biophysj.106.082487. Epub 2006 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验