Suppr超能文献

分子-表面相互作用的量子-经典建模中的重大挑战。

Grand challenges in quantum-classical modeling of molecule-surface interactions.

机构信息

Center of Smart Interfaces, Technische Universität Darmstadt, Petersenstr. 17, Darmstadt 64287, Germany.

出版信息

J Comput Chem. 2013 May 30;34(14):1177-88. doi: 10.1002/jcc.23247. Epub 2013 Feb 19.

Abstract

A detailed understanding of the adsorption of small molecules or macromolecules to a materials surface is of importance, for example, in the context of material and biomaterial research. Classical atomistic simulations in principle provide microscopic insight in the complex entropic and enthalpic interplay at the interface. However, an application of classical atomistic simulation techniques to such interface systems is a nontrivial problem, mostly because commonly used force fields cannot be straightforwardly applied, as they are usually developed to reproduce bulk properties of either solids or liquids but not the interfacial region between two phases. Therefore, a dual-scale modeling approach has often been the method of choice in the past, in which the classical force field is parameterized such that quantum chemical information on near-surface conformations and adsorption energies is reproduced by the classical force field. We will discuss in this review the current state-of-the-art of quantum-classical modeling of molecule-surface interactions and outline the major challenges in this field. In this context, we will, among other things, lay emphasis on discussing ways to obtain representable force fields and propose systematic and system-independent strategies to optimize the quantum-classical fitting procedure.

摘要

深入了解小分子或生物大分子在材料表面的吸附对于材料和生物材料研究等方面非常重要。经典原子模拟原则上为界面处复杂的熵和焓相互作用提供了微观见解。然而,将经典原子模拟技术应用于此类界面系统是一个复杂的问题,主要是因为通常使用的力场不能直接应用,因为它们通常是为了再现固体或液体的体相性质而开发的,而不是两个相之间的界面区域。因此,在过去,双尺度建模方法通常是首选方法,其中经典力场被参数化,以使表面构象和吸附能的量子化学信息由经典力场再现。在这篇综述中,我们将讨论当前分子-表面相互作用的量子经典建模的最新进展,并概述该领域的主要挑战。在这方面,我们将特别强调讨论获得代表性力场的方法,并提出系统和系统独立的策略来优化量子经典拟合过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验