Cuniasse P, Fazakerley G V, Guschlbauer W, Kaplan B E, Sowers L C
Département de Biologie, Centre d'Etudes Nucléaires de Saclay, Gif-sur-Yvette, France.
J Mol Biol. 1990 May 20;213(2):303-14. doi: 10.1016/S0022-2836(05)80192-5.
An abasic site in DNA creates a strong block to DNA polymerase and is a mutagenic base lesion. In this study, we present structural and dynamic properties of duplex oligodeoxynucleotides containing G, C and T opposite a model abasic site studied by one and two-dimensional nuclear magnetic resonance spectroscopy. We have demonstrated that A opposite the abasic site was positioned within the helix as if paired with T, and that the A residue melted co-operatively with the surrounding helix. We report here that G opposite the abasic site is also observed to be predominantly intrahelical in a normal anti conformation at low temperature. With increasing temperature, the mobility of the G residue increases rapidly and apparently is in a "melted state" well before denaturation of the helix. At low temperature, two species are found for T opposite the abasic site; one, intrahelical, one extrahelical. These species are in slow exchange with one another on a proton nuclear magnetic resonance time-scale. The two species then move into fast exchange with increasing temperature and the proportion of the extra-helical form increases. When C is positioned opposite the abasic site, both the C residue and the abasic sugar are extrahelical, the helix collapses, and the adjacent G.C base-pairs stack over one another. On the basis of these observations, we propose a model that explains why the abasic site acts to block DNA replication. Further, we suggest an explanation for the observed polymerase preference for base selection at abasic sites.
DNA中的无碱基位点会对DNA聚合酶产生强烈阻碍,并且是一种诱变碱基损伤。在本研究中,我们展示了通过一维和二维核磁共振光谱研究的、含有与模型无碱基位点相对的G、C和T的双链寡脱氧核苷酸的结构和动力学性质。我们已经证明,与无碱基位点相对的A位于螺旋内部,就好像与T配对一样,并且A残基与周围的螺旋协同解链。我们在此报告,在低温下,与无碱基位点相对的G也主要以正常的反式构象位于螺旋内部。随着温度升高,G残基的流动性迅速增加,并且显然在螺旋变性之前就处于“解链状态”。在低温下,发现与无碱基位点相对的T存在两种状态;一种是螺旋内的,一种是螺旋外的。在质子核磁共振时间尺度上,这两种状态之间相互缓慢交换。随着温度升高,这两种状态进入快速交换,并且螺旋外形式的比例增加。当C位于与无碱基位点相对的位置时,C残基和无碱基糖都位于螺旋外,螺旋结构瓦解,相邻的G.C碱基对相互堆叠。基于这些观察结果,我们提出了一个模型,解释了为什么无碱基位点会阻碍DNA复制。此外,我们对观察到的聚合酶在无碱基位点进行碱基选择的偏好提出了一种解释。