Suppr超能文献

人类单胺转运体的比较建模:底物结合的相似性。

Comparative modeling of the human monoamine transporters: similarities in substrate binding.

机构信息

Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.

出版信息

ACS Chem Neurosci. 2013 Feb 20;4(2):295-309. doi: 10.1021/cn300148r. Epub 2012 Nov 8.

Abstract

The amino acid compositions of the substrate binding pockets of the three human monoamine transporters are compared as is the orientation of the endogenous substrates, serotonin, dopamine, and norepinephrine, bound in these. Through a combination of homology modeling, induced fit dockings, molecular dynamics simulations, and uptake experiments in mutant transporters, we propose a common binding mode for the three substrates. The longitudinal axis of the substrates is similarly oriented with these, forming an ionic interaction between the ammonium group and a highly conserved aspartate, Asp98 (serotonin transporter, hSERT), Asp79 (dopamine transporter, hDAT), and Asp75 (norepinephrine transporter, hNET). The 6-position of serotonin and the para-hydroxyl groups of dopamine and norepinephrine were found to face Ala173 in hSERT, Gly153 in hDAT, and Gly149 in hNET. Three rotations of the substrates around the longitudinal axis were identified. In each mode, an aromatic hydroxyl group of the substrates occupied equivalent volumes of the three binding pockets, where small changes in amino acid composition explains the differences in selectivity. Uptake experiments support that the 5-hydroxyl group of serotonin and the meta-hydroxyl group norepinephrine and dopamine are placed in the hydrophilic pocket around Ala173, Ser438, and Thr439 in hSERT corresponding to Gly149, Ser419, Ser420 in hNET and Gly153 Ser422 and Ala423 in hDAT. Furthermore, hDAT was found to possess an additional hydrophilic pocket around Ser149 to accommodate the para-hydroxyl group. Understanding these subtle differences between the binding site compositions of the three transporters is imperative for understanding the substrate selectivity, which could eventually aid in developing future selective medicines.

摘要

比较了三种人单胺转运体的底物结合口袋的氨基酸组成,以及结合在这些口袋中的内源性底物 5-羟色胺、多巴胺和去甲肾上腺素的取向。通过同源建模、诱导契合对接、分子动力学模拟以及在突变转运体中的摄取实验,我们提出了三种底物的共同结合模式。底物的纵轴与这些底物相似,在铵基团和高度保守的天冬氨酸之间形成离子相互作用,Asp98(5-羟色胺转运体,hSERT)、Asp79(多巴胺转运体,hDAT)和 Asp75(去甲肾上腺素转运体,hNET)。发现 5-羟色胺的 6 位和多巴胺和去甲肾上腺素的对位羟基朝向 hSERT 中的 Ala173、hDAT 中的 Gly153 和 hNET 中的 Gly149。鉴定了三种围绕纵轴的底物旋转方式。在每种模式中,底物的芳基羟基占据三个结合口袋的等效体积,其中氨基酸组成的微小变化解释了选择性的差异。摄取实验支持 5-羟色胺的 5-羟基和去甲肾上腺素及多巴胺的间羟基被放置在 hSERT 中 Ala173、Ser438 和 Thr439 周围的亲水口袋中,对应于 hNET 中的 Gly149、Ser419、Ser420 和 hDAT 中的 Gly153、Ser422 和 Ala423。此外,发现 hDAT 具有围绕 Ser149 的额外亲水口袋以容纳对位羟基。了解这三种转运体结合位点组成之间的这些细微差异对于理解底物选择性至关重要,这最终有助于开发未来的选择性药物。

相似文献

1
Comparative modeling of the human monoamine transporters: similarities in substrate binding.
ACS Chem Neurosci. 2013 Feb 20;4(2):295-309. doi: 10.1021/cn300148r. Epub 2012 Nov 8.
2
Structure-activity relationships of bath salt components: substituted cathinones and benzofurans at biogenic amine transporters.
Psychopharmacology (Berl). 2019 Mar;236(3):939-952. doi: 10.1007/s00213-018-5059-5. Epub 2018 Nov 5.
4
Binding of the amphetamine-like 1-phenyl-piperazine to monoamine transporters.
ACS Chem Neurosci. 2012 Sep 19;3(9):693-705. doi: 10.1021/cn300040f. Epub 2012 Jun 10.
5
Coordination of Na(+) by monoamine ligands in dopamine, norepinephrine, and serotonin transporters.
J Chem Inf Model. 2008 Jul;48(7):1423-37. doi: 10.1021/ci700255d. Epub 2008 Jun 11.
6
Guidelines for Homology Modeling of Dopamine, Norepinephrine, and Serotonin Transporters.
ACS Chem Neurosci. 2016 Nov 16;7(11):1607-1613. doi: 10.1021/acschemneuro.6b00242. Epub 2016 Sep 19.
8
Human genetics and pharmacology of neurotransmitter transporters.
Handb Exp Pharmacol. 2006(175):327-71. doi: 10.1007/3-540-29784-7_16.
9
Monoamine transporters: structure, intrinsic dynamics and allosteric regulation.
Nat Struct Mol Biol. 2019 Jul;26(7):545-556. doi: 10.1038/s41594-019-0253-7. Epub 2019 Jul 3.
10
Emerging structure-function relationships defining monoamine NSS transporter substrate and ligand affinity.
Biochem Pharmacol. 2010 Apr 15;79(8):1083-91. doi: 10.1016/j.bcp.2009.11.019. Epub 2009 Nov 30.

引用本文的文献

2
Overview of the structure and function of the dopamine transporter and its protein interactions.
Front Physiol. 2023 Mar 3;14:1150355. doi: 10.3389/fphys.2023.1150355. eCollection 2023.
3
In Silico Investigations into the Selectivity of Psychoactive and New Psychoactive Substances in Monoamine Transporters.
ACS Omega. 2022 Oct 21;7(43):38311-38321. doi: 10.1021/acsomega.2c02714. eCollection 2022 Nov 1.
4
Illumination of serotonin transporter mechanism and role of the allosteric site.
Sci Adv. 2021 Dec 3;7(49):eabl3857. doi: 10.1126/sciadv.abl3857. Epub 2021 Dec 1.
7
A non-helical region in transmembrane helix 6 of hydrophobic amino acid transporter MhsT mediates substrate recognition.
EMBO J. 2021 Jan 4;40(1):e105164. doi: 10.15252/embj.2020105164. Epub 2020 Nov 6.
8
SLC6 transporter oligomerization.
J Neurochem. 2021 May;157(4):919-929. doi: 10.1111/jnc.15145. Epub 2020 Aug 28.
10
Structure-Function of the High Affinity Substrate Binding Site (S1) of Human Norepinephrine Transporter.
Front Pharmacol. 2020 Mar 5;11:217. doi: 10.3389/fphar.2020.00217. eCollection 2020.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Monoamine transporter structure, function, dynamics, and drug discovery: a computational perspective.
AAPS J. 2012 Dec;14(4):820-31. doi: 10.1208/s12248-012-9391-0. Epub 2012 Aug 24.
3
Unbiased simulations reveal the inward-facing conformation of the human serotonin transporter and Na(+) ion release.
PLoS Comput Biol. 2011 Oct;7(10):e1002246. doi: 10.1371/journal.pcbi.1002246. Epub 2011 Oct 27.
4
Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET.
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15810-5. doi: 10.1073/pnas.1106030108. Epub 2011 Sep 1.
5
Dopamine transport by the serotonin transporter: a mechanistically distinct mode of substrate translocation.
J Neurosci. 2011 Apr 27;31(17):6605-15. doi: 10.1523/JNEUROSCI.0576-11.2011.
6
The role of local hydration and hydrogen-bonding dynamics in ion and solute release from ion-coupled secondary transporters.
Biochemistry. 2011 Mar 22;50(11):1848-56. doi: 10.1021/bi101454f. Epub 2011 Feb 15.
7
Two mechanisms of ion selectivity in protein binding sites.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20329-34. doi: 10.1073/pnas.1007150107. Epub 2010 Nov 5.
8
Structural origins of nitroxide side chain dynamics on membrane protein α-helical sites.
Biochemistry. 2010 Nov 30;49(47):10045-60. doi: 10.1021/bi101148w. Epub 2010 Nov 8.
9
Structural basis of Na(+)-independent and cooperative substrate/product antiport in CaiT.
Nature. 2010 Sep 9;467(7312):233-6. doi: 10.1038/nature09310.
10
Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1.
Science. 2010 Apr 23;328(5977):470-3. doi: 10.1126/science.1186303.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验