Suppr超能文献

线粒体小电导 SK2 通道可预防谷氨酸诱导的细胞凋亡和线粒体功能障碍。

Mitochondrial small conductance SK2 channels prevent glutamate-induced oxytosis and mitochondrial dysfunction.

机构信息

Institut für Pharmakologie und Klinische Pharmazie, Fachbereich Pharmazie, Philipps-Universität Marburg, D-35032 Marburg, Germany.

出版信息

J Biol Chem. 2013 Apr 12;288(15):10792-804. doi: 10.1074/jbc.M113.453522. Epub 2013 Feb 19.

Abstract

Small conductance calcium-activated potassium (SK2/K(Ca)2.2) channels are known to be located in the neuronal plasma membrane where they provide feedback control of NMDA receptor activity. Here, we provide evidence that SK2 channels are also located in the inner mitochondrial membrane of neuronal mitochondria. Patch clamp recordings in isolated mitoplasts suggest insertion into the inner mitochondrial membrane with the C and N termini facing the intermembrane space. Activation of SK channels increased mitochondrial K(+) currents, whereas channel inhibition attenuated these currents. In a model of glutamate toxicity, activation of SK2 channels attenuated the loss of the mitochondrial transmembrane potential, blocked mitochondrial fission, prevented the release of proapoptotic mitochondrial proteins, and reduced cell death. Neuroprotection was blocked by specific SK2 inhibitory peptides and siRNA targeting SK2 channels. Activation of mitochondrial SK2 channels may therefore represent promising targets for neuroprotective strategies in conditions of mitochondrial dysfunction.

摘要

小电导钙激活钾 (SK2/K(Ca)2.2) 通道已知位于神经元质膜中,在那里它们提供 NMDA 受体活性的反馈控制。在这里,我们提供证据表明 SK2 通道也位于神经元线粒体的内膜中。在分离的 mitoplasts 中的膜片钳记录表明,SK2 通道插入到内膜中,C 和 N 末端朝向膜间空间。SK 通道的激活增加了线粒体 K(+)电流,而通道抑制则减弱了这些电流。在谷氨酸毒性模型中,激活 SK2 通道可减轻线粒体跨膜电位的丧失,阻断线粒体裂变,防止促凋亡线粒体蛋白的释放,并减少细胞死亡。针对 SK2 通道的特异性 SK2 抑制肽和 siRNA 阻断了神经保护作用。因此,激活线粒体 SK2 通道可能是线粒体功能障碍情况下神经保护策略的有希望的靶点。

相似文献

1
Mitochondrial small conductance SK2 channels prevent glutamate-induced oxytosis and mitochondrial dysfunction.
J Biol Chem. 2013 Apr 12;288(15):10792-804. doi: 10.1074/jbc.M113.453522. Epub 2013 Feb 19.
2
SK2 channels regulate mitochondrial respiration and mitochondrial Ca uptake.
Cell Death Differ. 2017 May;24(5):761-773. doi: 10.1038/cdd.2017.2. Epub 2017 Mar 10.
3
Subcellular expression and neuroprotective effects of SK channels in human dopaminergic neurons.
Cell Death Dis. 2014 Jan 16;5(1):e999. doi: 10.1038/cddis.2013.530.
4
Small conductance calcium-activated potassium type 2 channels regulate alcohol-associated plasticity of glutamatergic synapses.
Biol Psychiatry. 2011 Apr 1;69(7):625-32. doi: 10.1016/j.biopsych.2010.09.025. Epub 2010 Nov 5.
7
Coassembly and coupling of SK2 channels and mGlu5 receptors.
J Neurosci. 2014 Oct 29;34(44):14793-802. doi: 10.1523/JNEUROSCI.2038-14.2014.
8
SK2 channels are neuroprotective for ischemia-induced neuronal cell death.
J Cereb Blood Flow Metab. 2011 Dec;31(12):2302-12. doi: 10.1038/jcbfm.2011.90. Epub 2011 Jun 29.
9
Ca2+-activated K+ channels in gonadotropin-releasing hormone-stimulated mouse gonadotrophs.
Endocrinology. 2009 May;150(5):2264-72. doi: 10.1210/en.2008-1442. Epub 2008 Dec 23.
10
Activation of SK2 channels preserves ER Ca²⁺ homeostasis and protects against ER stress-induced cell death.
Cell Death Differ. 2016 May;23(5):814-27. doi: 10.1038/cdd.2015.146. Epub 2015 Nov 20.

引用本文的文献

1
Diesel exhaust particles alter mitochondrial bioenergetics and cAMP producing capacity in human bronchial epithelial cells.
Front Toxicol. 2024 Jul 25;6:1412864. doi: 10.3389/ftox.2024.1412864. eCollection 2024.
2
Plasma membrane SK2 channel activity regulates migration and chemosensitivity of high-grade serous ovarian cancer cells.
Mol Oncol. 2024 Aug;18(8):1853-1865. doi: 10.1002/1878-0261.13631. Epub 2024 Mar 13.
3
Outlook of PINK1/Parkin signaling in molecular etiology of Parkinson's disease, with insights into knockout models.
Zool Res. 2023 May 18;44(3):559-576. doi: 10.24272/j.issn.2095-8137.2022.406.
4
Small-conductance calcium-activated potassium channels in the heart: expression, regulation and pathological implications.
Philos Trans R Soc Lond B Biol Sci. 2023 Jun 19;378(1879):20220171. doi: 10.1098/rstb.2022.0171. Epub 2023 May 1.
5
Relevance of Abnormal KCNN1 Expression and Osmotic Hypersensitivity in Ewing Sarcoma.
Cancers (Basel). 2022 Oct 1;14(19):4819. doi: 10.3390/cancers14194819.
6
Current Challenges of Mitochondrial Potassium Channel Research.
Front Physiol. 2022 May 31;13:907015. doi: 10.3389/fphys.2022.907015. eCollection 2022.
7
Regulation of Aging and Longevity by Ion Channels and Transporters.
Cells. 2022 Mar 31;11(7):1180. doi: 10.3390/cells11071180.
8
Methods of Measuring Mitochondrial Potassium Channels: A Critical Assessment.
Int J Mol Sci. 2022 Jan 21;23(3):1210. doi: 10.3390/ijms23031210.
10
Alternative Targets for Modulators of Mitochondrial Potassium Channels.
Molecules. 2022 Jan 4;27(1):299. doi: 10.3390/molecules27010299.

本文引用的文献

1
Protective Roles for Potassium SK/K(Ca)2 Channels in Microglia and Neurons.
Front Pharmacol. 2012 Nov 26;3:196. doi: 10.3389/fphar.2012.00196. eCollection 2012.
4
AIF depletion provides neuroprotection through a preconditioning effect.
Apoptosis. 2012 Oct;17(10):1027-38. doi: 10.1007/s10495-012-0748-8.
5
Inhibition of Drp1 provides neuroprotection in vitro and in vivo.
Cell Death Differ. 2012 Sep;19(9):1446-58. doi: 10.1038/cdd.2012.18. Epub 2012 Mar 2.
6
Mitochondria-ros crosstalk in the control of cell death and aging.
J Signal Transduct. 2012;2012:329635. doi: 10.1155/2012/329635. Epub 2011 Nov 14.
7
Impedance measurement for real time detection of neuronal cell death.
J Neurosci Methods. 2012 Jan 15;203(1):69-77. doi: 10.1016/j.jneumeth.2011.09.012. Epub 2011 Sep 22.
8
Small-conductance Ca2+-activated K+ channels: form and function.
Annu Rev Physiol. 2012;74:245-69. doi: 10.1146/annurev-physiol-020911-153336. Epub 2011 Sep 19.
9
SK2 channels are neuroprotective for ischemia-induced neuronal cell death.
J Cereb Blood Flow Metab. 2011 Dec;31(12):2302-12. doi: 10.1038/jcbfm.2011.90. Epub 2011 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验