Suppr超能文献

微传感器运动捕捉中的全局位移估计的分层信息融合。

Hierarchical information fusion for global displacement estimation in microsensor motion capture.

机构信息

Department of Bioengineering, National University of Singapore, Singapore 117575.

出版信息

IEEE Trans Biomed Eng. 2013 Jul;60(7):2052-63. doi: 10.1109/TBME.2013.2248085. Epub 2013 Feb 22.

Abstract

This paper presents a novel hierarchical information fusion algorithm to obtain human global displacement for different gait patterns, including walking, running, and hopping based on seven body-worn inertial and magnetic measurement units. In the first-level sensor fusion, the orientation for each segment is achieved by a complementary Kalman filter (CKF) which compensates for the orientation error of the inertial navigation system solution through its error state vector. For each foot segment, the displacement is also estimated by the CKF, and zero velocity update is included for the drift reduction in foot displacement estimation. Based on the segment orientations and left/right foot locations, two global displacement estimates can be acquired from left/right lower limb separately using a linked biomechanical model. In the second-level geometric fusion, another Kalman filter is deployed to compensate for the difference between the two estimates from the sensor fusion and get more accurate overall global displacement estimation. The updated global displacement will be transmitted to left/right foot based on the human lower biomechanical model to restrict the drifts in both feet displacements. The experimental results have shown that our proposed method can accurately estimate human locomotion for the three different gait patterns with regard to the optical motion tracker.

摘要

本文提出了一种新的分层信息融合算法,用于基于七个穿戴式惯性和磁测量单元获取不同步态模式(包括行走、跑步和跳跃)下的人体整体位移。在第一级传感器融合中,每个节段的方向通过互补卡尔曼滤波器(CKF)来实现,该滤波器通过其误差状态向量补偿惯性导航系统解的方向误差。对于每个脚部节段,通过 CKF 来估计位移,并且包括零速度更新以减少脚部位移估计中的漂移。基于节段的方向和左右脚的位置,可以使用链接的生物力学模型分别从左右下肢获取两个整体位移估计。在第二级几何融合中,部署另一个卡尔曼滤波器来补偿传感器融合中两个估计之间的差异,以获得更准确的整体整体位移估计。更新后的整体位移将根据人体下肢生物力学模型传输到左右脚,以限制双脚位移中的漂移。实验结果表明,我们提出的方法可以在三种不同的步态模式下准确地估计人体运动,与光学运动跟踪器相比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验