Suppr超能文献

化学自复制最小模型中的自我调节

Self-regulation in a minimal model of chemical self-replication.

作者信息

Lou Sylvia J, Peacock-López Enrique

机构信息

Department of Chemistry, Williams College, Williamstown, MA 01267 USA.

出版信息

J Biol Phys. 2012 Mar;38(2):349-64. doi: 10.1007/s10867-011-9252-6. Epub 2011 Dec 24.

Abstract

In biological systems, regulation plays an important role in keeping metabolite concentrations within physiological ranges. To study the dynamical implications of self-regulation, we consider a functional form used in genetic networks and couple it to a mechanism associated with chemical self-replication. For the two-variable minimal model, we find that activation can yield chemical toggles similar to those reported for gene repression in E. coli as well as more complex dynamics.

摘要

在生物系统中,调节在将代谢物浓度维持在生理范围内起着重要作用。为了研究自我调节的动力学影响,我们考虑了遗传网络中使用的一种函数形式,并将其与化学自我复制相关的机制相结合。对于双变量最小模型,我们发现激活可以产生类似于大肠杆菌中基因抑制所报道的化学开关以及更复杂的动力学。

相似文献

1
Self-regulation in a minimal model of chemical self-replication.
J Biol Phys. 2012 Mar;38(2):349-64. doi: 10.1007/s10867-011-9252-6. Epub 2011 Dec 24.
2
Bistability and Bifurcation in Minimal Self-Replication and Nonenzymatic Catalytic Networks.
Chemphyschem. 2017 Jul 5;18(13):1842-1850. doi: 10.1002/cphc.201601293. Epub 2017 Mar 21.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Determinants of bistability in induction of the Escherichia coli lac operon.
IET Syst Biol. 2008 Sep;2(5):293-303. doi: 10.1049/iet-syb:20080095.
5
Coupling oscillations and switches in genetic networks.
Biosystems. 2010 Jan;99(1):60-9. doi: 10.1016/j.biosystems.2009.08.009. Epub 2009 Sep 6.
6
Modeling genetic networks and their evolution: a complex dynamical systems perspective.
Biol Chem. 2001 Sep;382(9):1289-99. doi: 10.1515/BC.2001.161.
7
Determining the bistability parameter ranges of artificially induced lac operon using the root locus method.
Comput Biol Med. 2015 Jun;61:75-91. doi: 10.1016/j.compbiomed.2015.03.009. Epub 2015 Mar 24.
8
Boolean models can explain bistability in the lac operon.
J Comput Biol. 2011 Jun;18(6):783-94. doi: 10.1089/cmb.2011.0031. Epub 2011 May 12.
9
Microscopic mechanism for self-organized quasiperiodicity in random networks of nonlinear oscillators.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042918. doi: 10.1103/PhysRevE.90.042918. Epub 2014 Oct 20.
10
Robust dynamical pattern formation from a multifunctional minimal genetic circuit.
BMC Syst Biol. 2010 Apr 22;4:48. doi: 10.1186/1752-0509-4-48.

本文引用的文献

3
Environmentally-modulated changes in fluorescence distribution in cells with oscillatory genetic network dynamics.
J Biotechnol. 2009 Mar 25;140(3-4):203-17. doi: 10.1016/j.jbiotec.2009.01.011. Epub 2009 Jan 31.
4
The mean frequency of transcriptional bursting and its variation in single cells.
J Math Biol. 2010 Jan;60(1):27-58. doi: 10.1007/s00285-009-0258-7. Epub 2009 Mar 10.
5
Self-sustained replication of an RNA enzyme.
Science. 2009 Feb 27;323(5918):1229-32. doi: 10.1126/science.1167856. Epub 2009 Jan 8.
6
Small-scale copy number variation and large-scale changes in gene expression.
Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16659-64. doi: 10.1073/pnas.0806239105. Epub 2008 Oct 22.
7
Reconstruction of transcription-translation dynamics with a model of gene networks.
J Theor Biol. 2008 Dec 21;255(4):378-86. doi: 10.1016/j.jtbi.2008.09.006. Epub 2008 Sep 18.
8
Sustained oscillations in extended genetic oscillatory systems.
Biophys J. 2008 Jun;94(11):4270-6. doi: 10.1529/biophysj.107.128017. Epub 2008 Mar 7.
9
Effects of molecular memory and bursting on fluctuations in gene expression.
Science. 2008 Jan 18;319(5861):339-43. doi: 10.1126/science.1144331.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验