Suppr超能文献

外推生存曲线的“危害”。

The "hazards" of extrapolating survival curves.

机构信息

Health Economics Group, Norwich Medical School, University of East Anglia, United Kingdom (CD)

Section of Public Health and Health Policy, University of Glasgow, United Kingdom (AB)

出版信息

Med Decis Making. 2013 Apr;33(3):369-80. doi: 10.1177/0272989X12475091. Epub 2013 Mar 3.

Abstract

BACKGROUND

It is widely recommended that health technology appraisals adopt a lifetime horizon to assess the relative costs and benefits of an intervention. However, most trials or clinical studies have relatively short follow-up periods, with the event of interest not occurring before the end of the study for many subjects. In such cases, survival analysis using parametric models can be used to extrapolate into the future.

OBJECTIVE

To assess the accuracy of survival analysis in projecting future events beyond the sample estimation period.

DESIGN

Using a previously published comparison of 2 alternative hip replacement prostheses based on 8 years of data as a case study, we extend the data set to include 8 years more data. Using the new data, the parametric assumptions of the previous study and its success in predicting the outcomes are assessed.

RESULTS

The extended data set casts doubt on the previous study's findings. The failure curves of the 2 prostheses now cross, and the proportional hazards assumption no longer holds. Extrapolations from the original data set yielded very good predictions for one prosthesis for the full 16 years but were much poorer for the other, even when the proportionality assumption was relaxed.

CONCLUSIONS

Care should be taken when extrapolating treatment benefits for new technologies early in their life cycle based on observational or randomized controlled trial data sources. This case study reveals that predictions of prosthesis failure based on a short follow-up period were inaccurate compared with those after a longer period of follow-up.

摘要

背景

广泛建议卫生技术评估采用终生时间范围来评估干预措施的相对成本和效益。然而,大多数试验或临床研究的随访期相对较短,对于许多研究对象来说,感兴趣的事件在研究结束前并未发生。在这种情况下,可以使用参数模型的生存分析来进行外推。

目的

评估生存分析在预测样本估计期之外未来事件的准确性。

设计

使用之前发表的一项基于 8 年数据的两种替代髋关节置换假体的比较作为案例研究,我们将数据集扩展到包括 8 年的数据。使用新数据,评估先前研究的参数假设及其对结果预测的成功。

结果

扩展数据集对先前研究的发现提出了质疑。两种假体的失败曲线现在相交,比例风险假设不再成立。从原始数据集进行的外推对一种假体的 16 年进行了非常好的预测,但对另一种假体的预测则差得多,即使放宽了比例性假设。

结论

在新技术的生命周期早期,基于观察性或随机对照试验数据源推断治疗效果时应谨慎。本案例研究表明,与更长随访期后的预测相比,基于短期随访的假体失败预测不准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验