Suppr超能文献

用在线颜色选择器诊断共感觉:提高敏感性和特异性。

Diagnosing synaesthesia with online colour pickers: maximising sensitivity and specificity.

机构信息

Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK.

出版信息

J Neurosci Methods. 2013 Apr 30;215(1):156-60. doi: 10.1016/j.jneumeth.2013.02.009. Epub 2013 Mar 1.

Abstract

The most commonly used method for formally assessing grapheme-colour synaesthesia (i.e., experiencing colours in response to letter and/or number stimuli) involves selecting colours from a large colour palette on several occasions and measuring consistency of the colours selected. However, the ability to diagnose synaesthesia using this method depends on several factors that have not been directly contrasted. These include the type of colour space used (e.g., RGB, HSV, CIELUV, CIELAB) and different measures of consistency (e.g., city block and Euclidean distance in colour space). This study aims to find the most reliable way of diagnosing grapheme-colour synaesthesia based on maximising sensitivity (i.e., ability of a test to identify true synaesthetes) and specificity (i.e., ability of a test to identify true non-synaesthetes). We show, applying ROC (receiver operating characteristics) to binary classification of a large sample of self-declared synaesthetes and non-synaesthetes, that the consistency criterion (i.e., cut-off value) for diagnosing synaesthesia is considerably higher than the current standard in the field. We also show that methods based on perceptual CIELUV and CIELAB colour models (rather than RGB and HSV colour representations) and Euclidean distances offer an even greater sensitivity and specificity than most currently used measures. Together, these findings offer improved heuristics for the behavioural assessment of grapheme-colour synaesthesia.

摘要

评估文字-颜色联觉(即对字母和/或数字刺激产生颜色感觉)最常用的方法是在多次从大调色板中选择颜色,并测量所选择颜色的一致性。然而,使用这种方法诊断联觉的能力取决于几个尚未直接对比的因素。这些因素包括所使用的颜色空间类型(例如 RGB、HSV、CIELUV、CIELAB)和一致性的不同度量(例如颜色空间中的城市街区和欧几里得距离)。本研究旨在根据最大化灵敏度(即测试识别真正联觉者的能力)和特异性(即测试识别真正非联觉者的能力)找到最可靠的方法来诊断文字-颜色联觉。我们通过对大量自我宣称的联觉者和非联觉者的二进制分类应用 ROC(接收者操作特征),表明用于诊断联觉的一致性标准(即截止值)明显高于该领域的当前标准。我们还表明,基于感知 CIELUV 和 CIELAB 颜色模型(而不是 RGB 和 HSV 颜色表示)和欧几里得距离的方法比大多数当前使用的度量标准提供了更高的灵敏度和特异性。这些发现共同为文字-颜色联觉的行为评估提供了改进的启发式方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验