Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America.
PLoS Comput Biol. 2013;9(2):e1002932. doi: 10.1371/journal.pcbi.1002932. Epub 2013 Feb 28.
Stimulus-induced perturbations from the steady state are a hallmark of signal transduction. In some signaling modules, the steady state is characterized by rapid synthesis and degradation of signaling proteins. Conspicuous among these are the p53 tumor suppressor, its negative regulator Mdm2, and the negative feedback regulator of NFκB, IκBα. We investigated the physiological importance of this turnover, or flux, using a computational method that allows flux to be systematically altered independently of the steady state protein abundances. Applying our method to a prototypical signaling module, we show that flux can precisely control the dynamic response to perturbation. Next, we applied our method to experimentally validated models of p53 and NFκB signaling. We find that high p53 flux is required for oscillations in response to a saturating dose of ionizing radiation (IR). In contrast, high flux of Mdm2 is not required for oscillations but preserves p53 sensitivity to sub-saturating doses of IR. In the NFκB system, degradation of NFκB-bound IκB by the IκB kinase (IKK) is required for activation in response to TNF, while high IKK-independent degradation prevents spurious activation in response to metabolic stress or low doses of TNF. Our work identifies flux pairs with opposing functional effects as a signaling motif that controls the stimulus-sensitivity of the p53 and NFκB stress-response pathways, and may constitute a general design principle in signaling pathways.
刺激引起的对稳态的干扰是信号转导的一个标志。在一些信号模块中,稳态的特点是信号蛋白的快速合成和降解。其中引人注目的是 p53 肿瘤抑制因子、其负调节因子 Mdm2 和 NFκB 的负反馈调节因子 IκBα。我们使用一种计算方法研究了这种周转率或通量的生理重要性,该方法可以系统地改变通量,而不改变稳态蛋白丰度。我们将该方法应用于一个典型的信号模块,结果表明通量可以精确控制对干扰的动态响应。接下来,我们将该方法应用于经过实验验证的 p53 和 NFκB 信号模型。我们发现,对于响应饱和剂量电离辐射 (IR) 的振荡,高 p53 通量是必需的。相比之下,Mdm2 的高通量对于振荡不是必需的,但可以保持 p53 对亚饱和剂量 IR 的敏感性。在 NFκB 系统中,IKK 对 NFκB 结合的 IκB 的降解是响应 TNF 激活所必需的,而 IKK 非依赖性的高降解可防止代谢应激或低剂量 TNF 引起的异常激活。我们的工作确定了具有相反功能效应的通量对作为一种信号基序,控制着 p53 和 NFκB 应激反应途径的刺激敏感性,并且可能构成信号途径中的一般设计原则。