Department of Material Science and Engineering, Kurume National College of Technology, 1-1-1, Komorino, Kurume, Fukuoka 830-8555, Japan.
ACS Appl Mater Interfaces. 2013 Apr 24;5(8):3340-7. doi: 10.1021/am400398d. Epub 2013 Apr 4.
The formation of microporous oxide layers on titanium (Ti) by anodization in sulfuric acid (H2SO4) solution and the influence of prior hydrogen charging on their properties are examined using electrochemical techniques, scanning electron microscopy, grazing incident X-ray diffraction, and X-ray photoelectron spectroscopy. When Ti is anodized in 1 M aqueous H2SO4 solution at a high direct current (DC) potential (>150 V) for 1 min, a porous surface layer develops, and the process takes place with spark-discharge. Under these conditions, oxygen evolution at the Ti electrode proceeds vigorously and concurrently with the formation of anodic oxide. The oxygen gas layer adjacent to the Ti surface acts as an insulator and triggers spark-discharge; the latter stimulates the development of pores. In the absence of spark-discharge, the oxide layer has extended surface roughness but low porosity. A porous oxide layer can be prepared by applying a lower DC voltage (130 V) and without spark-discharge, but Ti requires prior hydrogen charging by cathodic polarization in 1 M aqueous H2SO4 solution. Mott-Schottky measurements indicate that the oxide layers are n-type semiconductors and that the charge carrier density in the anodic oxide layer on the hydrogen-charged Ti is lower than in the case of untreated Ti. The hydrogen charging also affects the flat band potential of the anodic oxide layers on Ti by increasing its value. The reduced charge carrier density brought about by hydrogen charging decreases the oxide layer conductivity and creates favorable conditions for its electrical breakdown that stimulates the development of pores. The porous layer on the hydrogen-charged Ti consists of anatase and rutile phases of TiO2; it has the same chemical composition as the porous layer obtained on untreated Ti. X-ray photoelectron spectroscopy measurements show that prior hydrogen charging does not affect the thickness of anodic oxides on Ti. The porous oxide layer on Ti enables the growth of hydroxyapatite, thus revealing good bioactivity in simulated body fluids.
通过电化学技术、扫描电子显微镜、掠入射 X 射线衍射和 X 射线光电子能谱研究了在硫酸(H2SO4)溶液中通过阳极氧化在钛(Ti)上形成微孔氧化层,以及先前充氢对其性能的影响。当 Ti 在 1 M 水性 H2SO4 溶液中以高直流(DC)电势(>150 V)阳极氧化 1 分钟时,会形成多孔表面层,并且该过程伴随着火花放电。在这些条件下,Ti 电极上的氧气析出剧烈进行,同时形成阳极氧化物。与 Ti 表面相邻的氧气气体层充当绝缘体并引发火花放电;后者刺激了孔隙的发展。在没有火花放电的情况下,氧化物层具有扩展的表面粗糙度但低孔隙率。可以通过施加较低的 DC 电压(130 V)并且没有火花放电来制备多孔氧化物层,但是 Ti 需要通过在 1 M 水性 H2SO4 溶液中进行阴极极化来预先充氢。Mott-Schottky 测量表明,氧化物层是 n 型半导体,并且在充氢的 Ti 上的阳极氧化层中的电荷载流子密度低于未经处理的 Ti 的情况。充氢还通过增加其值来影响 Ti 上的阳极氧化层的平带电势。充氢引起的电荷载流子密度降低会降低氧化物层的电导率,并为其电击穿创造有利条件,从而刺激孔隙的发展。充氢 Ti 上的多孔层由 TiO2 的锐钛矿和金红石相组成;它具有与未经处理的 Ti 上获得的多孔层相同的化学成分。X 射线光电子能谱测量表明,先前的充氢不会影响 Ti 上阳极氧化物的厚度。Ti 上的多孔氧化物层允许羟基磷灰石的生长,从而在模拟体液中表现出良好的生物活性。