Alves Filipa, Scholder Pascal, Nischang Ivo
Institute of Polymer Chemistry, Johannes Kepler University Linz, Welser Str. 42, A-4060 Leonding, Austria.
ACS Appl Mater Interfaces. 2013 Apr 10;5(7):2517-26. doi: 10.1021/am303048y. Epub 2013 Apr 1.
We report on the preparation of hybrid, organic-inorganic porous materials derived from polyhedral oligomeric vinylsilsesquioxanes (vinylPOSS) via a single-step molding process. The monolithic, large surface area materials are studied with a particular focus on morphology and porous properties. Radical vinyl polymerization of the nanometer-sized POSS building blocks is therefore utilized via a thermally initiated route and in porogenic diluents such as tetrahydrofuran and polyethylene glycols of varying composition. Careful choice of these porogenic solvents and proper choice of initiator concentration lead to highly porous monolithic building entities which show a rigid, 3D-adhered, porous structure, macroscopically adapting the shape of a given mold. The described materials reflect Brunauer-Emmett-Teller (BET) surface areas of 700 m2/g or more and maximum tunable mesopore volumes of up to 2 cm3/g. Experimental investigations demonstrate the option to tailor nanoporosity and macroporosity in the single-step free-radical polymerization process. While studies on the influence of the used porogenic solvents reveal tuneability of pore sizes due to the unique pore formation process, tailored existence of residual vinyl groups allows facile postpolymerization modification of the highly porous, large surface area hybrid materials exploited via thiol-ene "click" chemistry. Our developed, simply realizable preparation process explores a new route to derive porous organic-inorganic hybrid adsorbents for a wide variety of applications such as extraction, separation science, and catalysis.
我们报道了通过一步成型工艺制备由多面体低聚乙烯基倍半硅氧烷(乙烯基POSS)衍生的有机-无机杂化多孔材料。对整体式、大表面积材料进行了研究,特别关注其形态和多孔性能。因此,通过热引发途径并在致孔稀释剂(如四氢呋喃和不同组成的聚乙二醇)中利用纳米尺寸的POSS结构单元进行自由基乙烯基聚合。仔细选择这些致孔溶剂并适当选择引发剂浓度会产生高度多孔的整体式结构实体,这些实体呈现出刚性的、三维附着的多孔结构,宏观上适应给定模具的形状。所描述的材料的布鲁诺尔-埃米特-泰勒(BET)表面积为700平方米/克或更高,最大可调中孔体积可达2立方厘米/克。实验研究表明,在单步自由基聚合过程中可以调整纳米孔隙率和大孔隙率。虽然对所用致孔溶剂影响的研究揭示了由于独特的孔形成过程导致的孔径可调性,但残留乙烯基基团的定制存在使得通过硫醇-烯“点击”化学对高度多孔、大表面积的杂化材料进行后聚合改性变得容易。我们开发的、易于实现的制备工艺探索了一条新途径,以获得用于多种应用(如萃取、分离科学和催化)的多孔有机-无机杂化吸附剂。